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Abstract

A stochastic model for the performance evaluation of a key phase in the deploy-

ment process, namely Joint Reception, Staging, Onward Movement, and Integration

(JRSOI) is presented. The process is modeled as an open, multi-class tandem queue-

ing network wherein personnel and various classes of cargo are modeled as the flow

entities and the stages of the process constitute individual queueing stations. Single-

and multiple-class models at both low and high resolutions are presented. No analyt-

ical, stochastic model of this process currently exists in the literature or in practice.

The model provides a quick look at key aggregate performance measures such as

system throughput and closure, and can be used to expediently identify problems

occurring during JRSOI and the impact they have on the process. This informa-

tion can substantially aid decision makers in regulating process flow. The queueing

network model developed here can easily be expanded and adapted to any potential

area of conflict. Numerical comparisons with Monte-Carlo simulation demonstrate

that the model provides a viable, novel approach to the problem.

x



A STOCHASTIC MODEL FOR JOINT

RECEPTION, STAGING, ONWARD MOVEMENT,

AND INTEGRATION (JRSOI)

1. Introduction

When the U.S. military responds to a contingency, it must assemble the nec-

essary personnel, equipment, and materiel and move them to the area of operations

(AO). This process is commonly referred to as deployment. The U.S. military con-

ducts deployment in four phases: preparation activities, movement to and activities

at ports of embarkation (POEs), movement to ports of debarkation (PODs), and

movement from PODs to (and activities at) tactical assembly areas (TAAs). The

latter phase is the main focus of this research. This phase is referred to as Re-

ception, Staging, Onward Movement, and Integration (RSOI). Because deployment

typically involves a joint effort of the military services, this phase is often referred to

as Joint Reception, Staging, Onward Movement, and Integration (JRSOI) [18]. (The

terms JRSO&I, RSO&I, JRSOI, and RSOI are used interchangeably in this thesis.)

This thesis explores analytical, stochastic models for the performance evaluation of

JRSOI.

1.1 Problem Background

JRSOI is the essential process that transitions deploying personnel (pax) and

equipment and materiel (cargo) into combat-ready forces in the AO. It includes

receiving pax and cargo at PODs, assembling them into units at designated staging

sites, moving these units to destinations within the area of conflict, and integrating

them into combat-ready joint fighting forces. One primary goal of JRSOI is to

achieve flow balance, meaning the flow of pax and cargo is directed at a rate that
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can be accommodated at every stage of the process from arrival at a POD to final

integration within a combat unit [9]. However, this goal is seldom realized in military

exercises and real world conflicts [8]. Saturation often occurs at various points in

the process because flow is not being directed at a sufficient rate or due to resource

constraints [9]. Saturation strains available processing capacity and provides the

enemy a vulnerable target over an extended period. In what follows, some relevant

background is given for modes of transport into PODs, POD classification, and types

of entry into an area of conflict.

There are two modes of initial transport for pax and cargo being deployed:

airlift and sealift. Assets delivered by airlift are received at Aerial Ports of Debarka-

tion (APODs) and those delivered by sealift are received at Seaports of Debarkation

(SPODs). Airlift is expedient, requiring hours or days, and best suited for transport

of light, early-entry forces and for pax in general. Sealift is the most economical

means of moving bulk goods and heavy equipment but is extremely slow, requiring

weeks or even months. Typically, all pax and cargo arrive by airlift during the first

three weeks of deployment [8]. After this initial period, pax and high priority cargo

generally arrive by air and bulk cargo by sea [17]. Historically, for both major and

minor contingencies, 90 percent of all cargo by weight has been transported by sea,

with the remaining 10 percent transported by air [8]. This thesis takes into account

pax and cargo arriving by both airlift and sealift.

There are three types of SPODs: improved, world class ports; unimproved or

degraded ports; and bare beach or no port environment [8]. APODs are not classified

by type but have a similar wide variance in modernization and capability. This thesis

models a well-established and modernized APOD as the physical location for the

reception stage while also taking into account assets arriving through neighboring

APODs and SPODs. There are two types of entry into an area of conflict: opposed

and unopposed [8]. For opposed entry, combat units arrive intact, ready to fight

immediately upon arrival. Unopposed entry involves transporting pax and cargo to
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APODs and SPODs in non-hostile territory and moving them through the JRSOI

process. This thesis focuses on unopposed entry.

Successful deployment has traditionally been measured by the ability to move

forces from ports of embarkation to ports of debarkation [8]. As a result, pax and

cargo have arrived at PODs in sporadic surges leading to bottlenecks and other

inefficiencies during the JRSOI process [8]. In this thesis, JRSOI is modeled to

provide insight and analysis that aid in the planning and execution of future U.S.

military deployments.

1.2 Problem Definition and Methodology

The current JRSOI process experiences serious bottlenecks during military

operations and exercises due to insufficiently regulated flow between its stages [24].

This thesis seeks to create an analytical, stochastic model of the process and to

formally analyze this model for the purpose of obtaining computationally expedient

estimates of the appropriate performance measures. To the author’s knowledge,

there does not exist a formal, analytical model that captures the aggregate features

of the JRSOI process. Next, the research objectives of this work are described in

greater detail.

The first objective of this research is to gain a thorough understanding of

the JRSOI process by speaking with the subject matter experts (SMEs) associated

with JRSOI and studying relevant Department of Defense (DoD) publications. This

facilitates establishment of a concrete notional JRSOI process on which to base

an analytical model. The next objective is to provide a determination of the most

important performance metrics for the overall process and develop a stochastic model

using a queueing network approach. The third and final objective is to analyze

the model and conduct validation and verification testing. In what follows, the

methodologies to be employed in this thesis are discussed.
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The notional JRSOI process shall be modeled as an open queueing network.

The network consists of four nodes in tandem representing the four main stages of the

process: reception, staging, onward movement, and integration. These four nodes

are subsequently decomposed into a subnetwork encompassing the aggregate features

of each stage. Queueing network analysis software shall be developed to obtain

performance measures. The software is designed to allow any parametric probability

distribution to be used for interarrival and service times at each queue. Hence, for

any G/G/m queues in the network, performance measures are approximate rather

than exact. Comparison of the results obtained using queueing network analysis

with computer simulation results demonstrate the accuracy of these approximations.

Next, the contributions of this work are discussed.

This thesis contributes significantly to the military operations research liter-

ature. It provides a novel approach for modeling JRSOI. No analytical, stochastic

model of this process currently exists in the literature or in practice. The fact that

the model developed in this thesis can be coded using readily available software

languages such as Visual Basic and MATLAB means that no costly simulation or

optimization software is required to run it. The approximation equations used by

the model enable the computation of precise estimates for key performance metrics,

such as throughput and mean time in system, in a fraction of the time it would take a

simulation. The model can be used to expediently identify when and where problems

occur during JRSOI and to what degree these problems affect the process. This in-

formation can substantially aid decision makers in regulating process flow. The base

model developed here can readily be expanded and adapted to any potential area

of conflict. In addition, this thesis contributes to the stochastic operations research

community. In general, it demonstrates the importance of capturing stochasticity

in real-world systems. Furthermore, it provides a novel application of well-known

techniques. In particular, it validates the use of approximation techniques for ob-

taining performance metrics as opposed to obtaining exact measures for less exact
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network-models based on simplifying assumptions. In summary, these techniques

provide more accurate results and are much easier to apply.

1.3 Thesis Outline

The next chapter contains a broad review of available literature and knowledge

from SMEs. First, the JRSOI process is investigated to provide the understanding

needed to build a model. Second, queueing network analysis techniques that allow

for efficient computation of highly accurate results for queuing network models are

investigated.

Chapter 3 defines the problem and gives a rationale for the approach taken to

solve it. It contains an explicit development of the queueing network approximation

equations required for development of the queueing network models. Four queueing

network model configurations are developed based on four different class (single

versus multiple) and resolution (high versus low) combinations.

Chapter 4 contains a numerical analysis of the models developed in Chapter

3. It also contains the development of computer simulation models for the same

networks. The results from the analytical and simulation models are statistically

compared. Finally, Chapter 5 gives concluding remarks including insights gained

from the conducted tests and analyses, summary of contributions to the academic

and military communities, and recommendations for future research.
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2. Review of the Literature

In this chapter, a review of pertinent literature is provided. First, a brief look

at the history of JRSOI is provided to establish an appropriate context. This covers

the origins of JRSOI as well as doctrinal and tool development.

2.1 JRSOI Background

JRSOI was developed to doctrinally combine, into a single, formalized process,

the tasks of the receiving and organizing of incoming troops and equipment at PODs,

moving them to TAAs, and integrating them with existing combat units [8]. “JRSOI

[was] designed to eliminate much of the confusion associated with people and cargo

arriving in theater in disorganized pieces and to break down the bottlenecks that

have historically existed in large-scale joint operations” [27].

Deployment success has traditionally been measured by the rate at which pax

and cargo are delivered to PODs, and as a result, the tasks encompassed by JRSOI

have generally been overlooked [8]. The evolution of military doctrine, combined

with lessons learned from the Gulf War, led to a focus on and formalization of

JRSOI starting in the early 1990s [14]. In terms of doctrine, the post-cold war era

has seen a transition from forward basing to the “force projection” of expeditionary

forces. This translates to a shift between having assets based near potential AOs

to having them delivered as needed to AOs by air and sea through PODs. The

term force closure has been redefined as the point at which assets are successfully

integrated into combat units at TAAs rather than the point at which they arrive at

PODs. In terms of lessons learned from the Gulf War, Lieutenant General (Ret.)

Joseph M. Heiser summarized by stating, “As we have seen many times, the U.S. can

ship supplies and material to an objective area much more effectively and efficiently

than the objective area can unload and distribute those supplies” [9]. One of the

main causes of this deficiency was that “deployment planning tools in 1990-91 did
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not address distribution within the theater” [27]. Another primary reason was the

poor in-transit visibility of assets [7]. These problems combined to make achieving

unit integrity very difficult [21]. They also contributed significantly to the build up

of pax and cargo at PODs and staging areas which stressed the Saudi infrastructure

and exposed troop concentrations to possible enemy attack [9]. To alleviate these

problems, in-theater flow of pax and cargo must be planned, controlled, and tracked.

As part of the formalization of JRSOI, large-scale exercises have been developed

and conducted. The National Training Center (NTC), Fort Irwin, California, began

to develop an RSOI training program in 1994 and has subsequently integrated RSOI

tasks into its exercises at Fort Irwin and elsewhere [15]. The first joint military

RSOI Exercise was held in South Korea in April 1994 [25] and continues to be

held annually. Foal Eagle, another U.S.-South Korean joint military exercise, held

annually since 1961, began to focus on RSOI aspects in 1995 [6] and was linked with

the RSOI Exercise in 2002. An RSOI training center was established in Germany

during Bosnia operations in the mid 1990s [26]. In 1996, the U.S. Army Force

Deployment Rock Drill Exercise was conducted at Fort Eustis, Virginia, by the Army

to increase understanding of RSOI and to aid its development [22]. “Since the Gulf

War, RSOI has become one of the most important missions for U.S. Army Forces

Central Command–Kuwait (ARCENT-KU)” [16]. This mission for perfecting the

RSOI process [1] was formalized in 1999 when ARCENT-KU first conducted Lucky

Sentinel, a joint annual deployment exercise involving the U.S., U.K., and Kuwait

[23]. ARCENT–Qatar has a similar, RSOI-focused mission [2]. The efforts and

activities mentioned here highlight, but do not exhaust, the efforts and activities

related to JRSOI.

RSOI was derived from U.S. Army Field Manual 100-17 (28 Oct 92), Mobi-

lization, Deployment, Redeployment, and Demobilization [3]. “A series of Joint and

Army workshops in 1995 accelerated doctrine development” [15]. The U.S. Army

Field Manual 100-17-3, Reception, Staging, Onward Movement, and Integration was
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first published as a working draft in 1995 and formally published in 1999. The U.S.

Army Transportation School, Fort Eustis, Virginia, has had “the Training and Doc-

trine Command lead for development of RSO&I doctrine” [15]. Experience gained

from small scale contingencies in the 1990s “indicates that the same lessons were

relearned during each operation because the responsibilities for improving the de-

ployment process were diffused among many different organizations and not focused

on the requirements of the joint force” [5]. Therefore, to tie deployment improvement

efforts together, the Deployment Process Special Action Group (DPSAG) was estab-

lished in 1996 and “institutionalized as the Deployment Division in the Directorate

for Logistics (J4) of the Joint Staff in 1997” [5]. In 1998, the Commander-in-Chief for

the United States Joint Forces Command (CINCUSJFCOM) was designated “the

joint deployment process owner for DoD” [5]. As a direct result, the first joint

doctrine on RSOI, Joint Publication 4-01.8 Joint Tactics, Techniques, and Proce-

dures for Joint Reception, Staging, Onward Movement, and Integration, was pub-

lished in 2000 [5]. The Joint Deployment Training Center (JDTC), as an element

of USTRANSCOM, is the DoD’s center for learning and information for all joint

deployment doctrine, education and training issues [18].

2.2 Modeling and Simulation Tools

Doctrinal development has been complemented by the development and refine-

ment of a host of modeling and simulation (M&S) tools to enhance force projection

planning and execution. One of the most prevalent modeling tools for the JRSOI por-

tion of deployment is the Enhanced Logistics Intra-theater Support Tool (ELIST).

It is designed to evaluate the feasibility of surface transportation movement plans,

to simulate the marry-up of unit equipment and troops in staging areas, and to es-

timate closure trends [14]. Other tools that have been developed to model JRSOI,

or various aspects of it, include TRANSCAP, SMARTBRIDGE, MATT, CITM, and

FASTALS [14]. However, these tools address limited portions of JRSOI and have
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only limited capability to interact and share data [22]. According to the Warfighter

M&S Assessment, conducted by U.S. Central Command, U.S. Southern Command,

and U.S. Special Operations Command in August 2000, “...modeling of the Recep-

tion and Staging Onward-Movement Integration (RSOI) process, from method of

delivery through theater to tactical assembly area, is not done well.” This inability

to efficiently model JRSOI functions hinders the ability of combatant commanders

to determine feasibility of operational plans [24]. Thus, despite recent M&S devel-

opment efforts, much work is yet required to establish tools that can efficiently and

effectively aid in the planning and execution of military operations [14].

Furthermore, for JRSOI-specific tools to aid in overall deployment planning

and execution, they must be integrated with tools modeling the other phases of

deployment. Several full-spectrum M&S tools have been, and continue to be, devel-

oped to enable planners and operators to address end-to-end mobility requirements

covering the whole spectrum of deployment [22]. Some of these are standalone while

others are suites that tie together a collection of existing tools. The most preva-

lent of these is the Analysis of Mobility Platform (AMP) suite which incorporates a

host of prevalent tools including ELIST [14]. However, none of the end-to-end tools

developed thus far has the capability to authoritatively provide comprehensive end-

to-end analysis [14]. As a result, the Department of Defense continues to experience

difficulty in deployment planning and execution capability [14]. Further explanation

and description of current deployment M&S tools, their interaction, and ongoing

development efforts is given in a survey by Drummer [14].

2.3 Data Management Systems

One of the key capabilities of deployment M&S tools is the ability to inter-

act with and manage databases containing planning requirement and asset tracking

information. In particular, successful deployment depends on a well-planned and

carefully managed Time-Phased Force Deployment Data (TPFDD) flow [9]. The
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TPFDD is a planning database that indicates force requirements and prioritizes

transportation movement [8] produced by the Joint Operation Planning and Execu-

tion System (JOPES) [21]. Its purpose is to phase forces into operational areas at the

times and places required to support the plan of operations [10]. It is based on the

supported CINCs statement of his/her requirements by unit type, time period, and

priority for arrival [11]. The TPFDD must be analyzed to determine feasibility and

must be updated to incorporate any changes. The main JRSOI tool that supports

TPFDD feasibility analysis and has the ability to update it is ELIST. However, as it

and similar systems have become increasingly more capable, they have also become

increasingly more complex. This has lead to extensively long run times and com-

plicated operating procedures. The developers of ELIST are working to make their

“model more user-friendly so it can operate without extensive contractor support”

[24]. As with the M&S tools, the TPFDD and other deployment databases suffer

because a coordinated effort to link them together is lacking [24].

Databases containing asset visibility and tracking information are fed by Au-

tomated Identification Technology (AIT) tools. “Commands operating PODs have

historically been unaware of some inbound equipment or cargo. The lack of asset

visibility slows the reception process and chokes port capabilities” [17]. During the

Gulf War, the “inability to keep track of inbound shipments [was] evident in most of

the [Logistics Reports]” [27]. “Without in-transit visibility, logisticians could only

track, not predict, the logistics situation. Asset visibility was also a problem: of

the more than forty thousand containers deployed to the theater, well over half had

to be opened at least once to determine contents, ownership, and destination” [27].

Accurate In Transit Visibility (ITV) will “provide decision makers an increased ca-

pability to react to unexpected bottlenecks and verify unit movements” [21]. It can

also give inprocessing “teams a much better opportunity to know what will arrive,

when it will arrive, and prepare timely plans for unloading, marshalling, and” other

activities as pax and cargo arrive at PODs [21]. AIT can provide commanders infor-
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mation on the status, location, and movement of assets. It can include “bar codes

for individual items, optical memory cards for packs and containers, radio frequency

tags for containers and pallets, and movement tracking capability that uses satellite

links for convoys, trains, and barges” [12]. “This information can enhance theater

RSO&I management capabilities and enable efficient reception and processing of

units and equipment as they flow through the RSO&I process” [17]. In particular,

AIT can capture arrival and departure data for pax and cargo at PODs, moving

through Intermediate Staging Bases (ISBs), and at other designated transit points

[17]. It can employ satellite tracking during onward movement and capture data on

the arrival and force closure of units and equipment at TAAs [17]. The AIT tools

used for deployment have been incorporated into the JOPES.

The JOPES is the integrated command and control system used by the U.S.

military to plan, execute, and monitor joint military operations [12]. It “provides

users with an ordered and comprehensive set of policies and procedures for solving

complex mobility force deployment and sustainment problems” [10]. It has an infor-

mation reporting structure supported by automated data processing on the Global

Command and Control System (GCCS) [10]. GCSS is designed to provide accurate

and near real time total asset visibility vital to the deployment, employment, sus-

tainment, reconstitution, and redeployment of joint combat assets or resources [11].

It is a key tool for commanders in planning and conducting joint operations [12].

The principle enablers of GCCS are the Global Transportation Network (GTN) and

Joint Total Asset Availability (JTAV) systems. The GTN is the designated Depart-

ment of Defense (DOD) in-transit visibility (ITV) system, providing customers with

the ability to track the identity, status, and location of DOD units and non-unit

cargo, passengers, patients, forces, and military and commercial airlift, sealift, and

surface assets from origin to destination across the range of military operations [10].

In the future, GTN is expected to provide advanced feasibility analysis of planned

surface and air movements [21]. JTAV is the DOD’s automated capability for timely
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and accurate information on the location, movement, status, and identity of units,

personnel, equipment, and supplies [18]. JTAV integrates in process, in storage, and

In Transit Visibility (ITV). The development efforts for the systems mentioned in

this paragraph were initiated before the Gulf War but did not gain momentum until

after the War.

2.4 Summary

The recent emergence of JRSOI reflects the increased focus on deployment in

general, and its final phase in particular, integral to new force projection doctrine.

Many modeling and simulation and data management tools have been developed to

aid in the planning and execution of deployments. Effective modeling and simulation

tools must exploit the data management tools. Ideally, some of these tools should

have the capability to support the “rapid, accurate projection of logistic capabilities

and bottlenecks” [21]. Currently, however, tools having the capability to manage and

predict the flow of deployed assets, are either slow and cumbersome or nonexistent.

These functions can be performed more efficiently by analytical tools that

incorporate the stochastic nature of the operations. However, to the author’s knowl-

edge, no such tools exist for JRSOI or the deployment process in general. This

research seeks to build a foundation for such an analytical model. A tool based on

this model can provide key decision makers tremendous insight into how to manage

asset flow during JRSOI with comparatively little computational effort. In Chapter

3, the formal stochastic model for JRSOI is presented. The selected approach is

based on the well-known theory of queues and queueing networks.
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3. Methodology

In this chapter, an analytical, stochastic model for the Joint Reception, Stag-

ing, Onward Movement, and Integration (JRSOI) process is proposed. This is fol-

lowed by a review of some well known results for queueing network models.

3.1 Description of the Approach

The JRSOI process often experiences bottlenecks due to insufficiently regulated

flow. A primary reason for this insufficient regulation is that information for how

pax and cargo flow through the process is lacking. This lack of such information is

caused by the absence of analytical tools to approximate it. This research provides

an analytical method for calculating these critical performance measures.

A primary goal of JRSOI is flow balance, the continuous and controlled flow

of pax and cargo within and between its stages. Flow at a particular stage is based

on the interaction between arriving pax and cargo and the service capabilities of

that stage. Since interarrival and service times have a degree of variability that

can significantly impact flow, their behavior needs to be captured using probability

distributions. This inherent randomness of the process lends itself to stochastic

modeling. Furthermore, since the process can be easily decomposed into sequential

stages, and interarrival and service times can be observed for each of these stages, it

is highly appropriate to model this process as a tandem queueing network.

The JRSOI queueing network model was developed at two levels of resolution.

The lower resolution configurations consist of four nodes, one for each stage of the

process. The higher resolution configurations replace each of the four nodes of the

lower resolution model with a subnetwork of nodes representing the process within

that node’s respective stage. The entities for the model are pax and cargo. In

addition to having two levels of resolution, the model was developed at two entity

classification settings: single-class and multi-class. For the single-class configura-

3-1



tions, all entities are treated equivalently. For the multi-class configurations, entities

are separated into four classes: pax, outsize cargo, oversize cargo, and bulk cargo.

The cargo classifications are based on how the cargo is transported and on what air-

craft it may fit. Bulk cargo is assembled and transported on a single pallet; pallets

can fit on any aircraft. Oversize cargo is too large to fit on single pallet but can

fit on any aircraft. Some pieces of oversize cargo can be assembled onto a train of

pallets for transport. The final class is outsize; because of its size and dimensions,

it can only be carried on a C-17 or C-5. In total, four model configurations were

developed and tested, one for each resolution and entity-class combination. Next,

the individual stages of the process are discussed.

 

RECEPTION INTEGRATIONSTAGING
ONWARD

MOVEMENT
RECEPTION INTEGRATIONSTAGING

ONWARD
MOVEMENT

Figure 3.1 A graphical depiction of the JRSOI process.

Reception is the process of receiving, offloading, and marshalling pax and cargo

at a port of debarkation and then transporting them to a staging area. The network

model’s reception node represents a single Aerial Port of Debarkation (APOD). En-

tities for this node arrive in bulk on airplanes. Upon arrival, these packets of entities

form a queue awaiting service at the APOD. The server sequentially receives, of-

floads, marshals, and transports these entities to the staging area where they await

transport by bus, train, or other mode of transportation. (Note that the model al-

lows entities to enter the network at any node thus accounting for the merging in of

pax and cargo from neighboring APODs and Sea Ports of Debarkation (SPODs).)

Staging is the process of assembling pax and cargo into mission ready units and

preparing them for onward movement. The staging node represents an Intermediate

Staging Base (ISB). Entities arrive in bulk from the reception node and from other

APODs and SPODs. Upon arrival, these packets of entities form a queue awaiting
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service. The server assembles these entities into mission-ready units, prepares them

for onward movement, and places them in a holding area to await transportation.

Onward movement is the process of moving units and accompanying materiel

from the staging area to Tactical Assembly Areas (TAA) or other final destinations

in the AO. The onward movement node represents various modes and routes of

transportation. The queue is the holding area at the staging node. The model

allows entities to enter this holding area from external sources. The server moves

entities to the TAAs by rail, road (typically in convoy), inland or coastal waterway,

or air.

Integration is the process of transferring mission-ready units into the combatant

commander’s force. The integration node represents the TAAs, taken collectively.

Entities arrive in bulk from the onward movement node and external sources. Upon

arrival, these packets of entities arrive and form a queue awaiting service. The

server transfers mission-ready units into the combatant commander’s force. Once

units complete processing at this stage, the entities are assumed to exit the system.

Next, modeling techniques for stochastic queueing networks are discussed.

Stochastic networks are typically modeled using computer simulation or an-

alytical techniques. Computer simulations for networks can be relatively easy to

develop and test if commercial simulation software is used. For some networks,

these simulations can expediently produce highly accurate results given the high

speed of modern computers. However, for complex networks, they can take hours or

days to run if a high level of precision is required. In addition, commercial simulation

software can be expensive (sometimes prohibitively so) for the end user to purchase.

As an example, a single, one-year license for the simulation software used for this

research has an approximate purchase price of $16K. On a much larger scale, the

U.S. military often hires contractors to develop sophisticated simulation models such

as those reviewed in the previous chapter. These efforts cost the military millions

of dollars and the models developed are often so complex that they require exten-
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sive contractor support to operate [14]. Run times for these models are measured

in hours or days. Alternatively, a well developed tool based on analytical queueing

techniques can be just as easy to use and produces results much faster, typically in a

few seconds or less. Another advantage of such techniques is that they are simplistic

enough to be programmed in languages commonly found on personal computers such

as Visual Basicr or MATLABr. In this thesis, a model is built based on analyti-

cal queueing techniques for the purpose of obtaining accurate network performance

metrics in an expedient manner and at negligible cost as compared to simulation.

Computer simulations are developed as a benchmark for comparison purposes.

There are two primary approaches for obtaining performance measures of a

network when using analytical queueing techniques. One approach is to approxi-

mate non-exponential interarrival- and service-time distributions with exponential

distributions or sums of exponential distributions. By this approach, exact analyti-

cal results can be obtained for the model, but the validity of the model often suffers.

The other approach is to approximate performance measures based on characteris-

tics, such as moments of probability distributions. By this approach, approximate

results can be obtained for highly valid models. The goal then is to ensure the ap-

proximating equations produce accurate results. The latter approach is the approach

taken here. Furthermore, the equations used to estimate performance measures are

taken from Whitt’s Queueing Network Analyzer (QNA) development [28]. Whitt’s

QNA equations were chosen because of their simplicity and high level of demon-

strated accuracy. Next, the formal description of the JRSOI model is provided.

3.2 Formal Model Description

In this section, the formal mathematical model is developed. First, a rudimen-

tary review of queueing theory is provided. For more details, the reader is referred

to Kleinrock [20]. Next, foundational assumptions and definitions are established
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for the queueing network model. Finally, additional assumptions and characteristics

unique to each of the four specific model configurations are given.

A queueing system may be comprised of a single queueing station or a network

of such stations. Therefore, to understand a queueing network, the characteristics of

the single queueing station(s) comprising that system must be described. There are

five components to a queueing station: an arrival process, a service process, the num-

ber of servers, the system capacity, and a queueing discipline. The arrival process

is primarily characterized by a parameterized probability distribution describing the

interarrival times of entities. Entities may be of a single class or of multiple classes,

and may arrive one at a time or in batches. Additional attributes that sometimes im-

pact the characteristics of an arrival process, such as balking, jockeying, and reneging,

are not discussed in this thesis. The service process is characterized by a parame-

terized probability distribution describing the service times of entities. Service rates

may or may not depend upon factors such as entity class or the number of entities

in the system. The third component of a queueing station, the number of servers,

simply indicates how many servers, operating in parallel, are available to service

entities. The fourth component, system capacity, is the total number of entities that

can be accommodated by the system. It is the sum of the number of entities that

can be accommodated by the server(s) and by the queue. It may be finite or infinite.

The final component, queueing discipline, determines the order in which entities

are served. Common disciplines include first come, first served (FCFS), last come,

first served (LCFS), non-preemptive priority (NPP), preemptive resume (PR), and

service in random order (SIRO). Queueing disciplines that determine service order

based on entity classification are called priority queueing disciplines. Queueing sta-

tions are succinctly described using Kendall’s notation [19], A/B/C/D/E, where A

specifies the interarrival-time distribution, B, the service-time distribution, C, the

number of servers, D, the system capacity, and E, the queueing discipline. The

terms D and E need not be specified in which case D would default to ∞ (signifying
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infinite capacity) and E would default to the FCFS queueing discipline. Based on

this information, performance measures for a queueing station can found.

For performance measures to be derived, a systematic method must be de-

veloped to capture, over time, the number of entities at a queueing station. Let

the integer-valued random variable X(t) be the number of entities at a queueing

station at time t. Then the sequence {X(t) : t ≥ 0} is a continuous-time stochastic

process on state space S = {0, 1, 2, ...} that captures the number of entities at the

station over time. The performance measures of interest in this thesis are based on

the long-run or ’steady-state’ performance of the system. Hence, mean performance

values are sought as t −→∞. Define pz = limt→∞ P {X(t) = z} as the steady-state

probability that there are z entities in the system. Define ρ to be the traffic intensity

or utilization which indicates the steady-state proportion of time that the servers are

not idle. It can be shown the probability that the servers are idle, (1− ρ), is equiva-

lent to the probability that the system is empty, p0. The steady-state distribution of

X(t) is given by the pz defined earlier where the pz are usually calculated recursively

based on p0 and the parameters of the interarrival- and service-time distributions.

The primary performance measures of interest can be derived based on the pz. These

measures are Wq, W , Lq, and L. Their form can vary widely depending on the spec-

ifications of the queueing station. Define L = limt→∞ E [X(t)] as the mean number

of entities at the queueing station. Then Lq = L− ρ is the mean number of entities

in the queue. The mean time an entity spends at the queueing station, W = λL,

and the mean time an entity spends waiting in the queue, Wq = λLq, can be found

using Little’s Law where λ is the arrival rate. In general, once any of these four

measures is found (based on the pz), the remaining three can be found directly using

Little’s Law and the parameters of the interarrival- and service-time distributions, λ

and µ, respectively. In this thesis, Wq is found first and W , Lq, and L are calculated

from Wq using Little’s Law and the process parameters. Little’s Law holds for all
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work-conserving queueing disciplines which are those that never allow servers to sit

idle when there is work to be done.

A queueing network is a collection of two or more queueing stations in which

customers flow between the stations. It can be represented by a connected graph in

which each node represents a queueing station and each arc represents an entity flow

having nonzero probability.

Next, the foundational assumptions and definitions for the model are estab-

lished. The network is open, meaning entities are allowed to enter and depart from

the network. There are no capacity constraints on the number of entities in the

system and each node has unlimited waiting space. Every node is modeled as a

G/G/m queue. The first G indicates that the interarrival times are generally dis-

tributed, the second G indicates that the service times are generally distributed,

and the m indicates the finite number of servers at each queueing station. (An M

(Markovian) designation for interarrival- and service-time distributions indicates use

of the exponential distribution.) Allowing interarrival and service times to be gener-

ally distributed is one of the key features of the model. This allows the specification

of any probability distribution for modeling arrival and service processes. Thus, the

model does not restrict usage to the exponential distribution. Furthermore, this

model does not require explicit characterization of the probability distribution, but

only the mean and variance. The model allows both internal and external arrivals to

each node (as depicted in Figure 3.1). The interarrival-time distribution parameters

calculated for each node incorporate both internal and external arrivals.

QNA is applied to approximate the desired performance metrics. The gen-

eral methodology is parametric decomposition or product-form-solution where each

node is analyzed separately based on the internal flow parameters calculated. The

internal flow parameters attempt to capture any dependence that exists among the

nodes. The decomposition approximation of Whitt [28] provides more accurate re-

sults for non-Markovian networks than would be acquired by calculating exact re-
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sults for Markovian representations of these networks. It is important to note that

the approximation equations used here give exact analytical results for Markovian,

single-class networks.

As an approximation, the arrival processes are treated as renewal processes.

A renewal process is a sequence of independently and identically distributed non-

negative random variables {Xn , n ≥ 1} such that Xn denotes the time between the

(n− 1)st and nth arrivals and the random variable Tn = X1 +X2 + · · ·+Xn denotes

the time of the nth arrival. The significance of an arrival process being a renewal pro-

cess is that it exhibits Markovian behavior without being exponentially distributed

and enables characterization using familiar parameters such as mean and squared

coefficient of variation. For this thesis, these two particular parameters of the arrival

processes are approximated by the equivalent parameters of their associated renewal

processes.

To approximate the traffic rates and standard performance measures for the

network, two parameters are required for both the arrival process and the service

process of each node. The two arrival process parameters required are the arrival

rate λj and squared coefficient of variation c2
aj for node j. The two service process

parameters required are the service rate µj and squared coefficient of variation c2
sj for

node j. In addition, a routing matrix R = [ri,j] is required giving the proportion of

entities completing service at facility i that go next to facility j. An external node,

node 0, is defined to represent the world external to the network.

The two service process parameters are given directly as input. However, the

interarrival-time parameters are calculated based on the external arrival rates λ0,j

and the routing matrix R using the well-known traffic rate equations. In total, four

numbers for each node in the network are required as input to run the model. Note

that all these equations can ultimately be written in terms of the input parameters.
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Suppose the network has n nodes. Then the fundamental traffic-rate equations

are

λj = λ0,j +
n∑

i=1

λiri,j, j = 1, 2, ..., n (3.1)

or in matrix notation,

Λ = Λ0(I −R)−1 (3.2)

where Λ0 = [λ0,j] is the external arrival-rate vector and R is the routing matrix.

Using these arrival rates, the traffic intensities (the probability that the server is

busy at an arbitrary point in time) defined by

ρj = λj/ (mjµj) , j = 1, 2, ..., n (3.3)

can be solved where mj indicates the number of servers at node j. The stability

condition, ρj < 1, is required for each node j. The related quantities for the arcs

can now be computed where

λi,j = λiri,j (3.4)

is the arrival rate to node j from node i and

pi,j = λi,j/λj (3.5)

is the proportion of arrivals to node j from node i. Similarly, the departure rate out

of the network from node i can be calculated:

di = λi

(
1−

n∑
j=1

ri,j

)
. (3.6)

The traffic variability equations are found by solving the system of equations given

by

c2
aj = aj +

n∑
i=1

c2
aibi,j, j = 1, 2, ..., n. (3.7)
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where aj and bi,j are constants, depending on the input data:

aj = 1 + wj

{
(
p0,jc

2
0j − 1

)
+

n∑
i=1

pi,j

[
(1− ri,j) + (1− vi,j) ri,jρ

2
i xi

]
}

(3.8)

and

bi,j = wjpi,jri,j

[
vi,j + (1− vi,j)

(
1− ρ2

i

)]
, (3.9)

where xi and wj are defined as

xi = 1 + m−0.5
i

(
max

{
c2
si, 0.2

}− 1
)
, (3.10)

and

wj =
[
1 + n (1− ρj)

2 (vj − 1)
]−1

, (3.11)

with

vj =

(
n∑

i=0

p2
i,j

)−1

. (3.12)

The vij values are adjustable values used in the convex combinations above to ap-

proximate departure operations. They are set to zero for this research to test the

performance of QNA without the assistance of this fine-tuning feature.

Now that the traffic intensity ρj and the rate λj and variability c2
aj parameters

for the internal arrival processes have been found for j = 1, 2, ..., n, the performance

measures for each node can be calculated. These aggregate network performance

measures are obtained based on the approximating assumption that the network

nodes are stochastically independent given the approximate flow parameters. Recall

that the rate µj and variability c2
sj parameters for the service process at each node

j were given as input.

The steady-state mean waiting time in queue, Wqj
, for node j is

Wqj
=

ρj

(
c2
aj + c2

sj

)
gj

2µj (1− ρj)
, j = 1, 2, ..., n. (3.13)
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where gj ≡ gj

(
ρj, c

2
aj, c

2
sj

)
is defined by [28]

gj

(
ρj, c

2
aj, c

2
sj

)
=





exp

[
−2(1−ρj)

3ρj

(1−c2aj)
2

c2aj+c2sj

]
c2
aj < 1

1 c2
aj ≥ 1.

(3.14)

By Little’s Law, the steady-state waiting time Wj, number of entities in each queue

Lqj
, and number of entities at each node Lj can be calculated:

Wj = 1/µj + Wqj
, (3.15)

Lqj
= λjWqj

, (3.16)

Lj = ρj + λjWqj
. (3.17)

The probability of delay (the probability a customer must wait in a queue for

service) at each node is denoted by σj which Whitt found by using the Kraemer and

Langenbach-Belz approximation [28]:

σj = ρj +
(
c2
aj − 1

)
ρj (1− ρj) hj, (3.18)

where hj ≡ hj(ρj, c
2
aj, c

2
sj) is defined by [28]

hj

(
ρj, c

2
aj, c

2
sj

)
=





1+c2aj+ρjc2sj

1+ρj(c2sj−1)+ρ2
j(4c2aj+c2sj)

c2
aj < 1

4ρj

c2aj+ρ2
j(4c2aj+c2sj)

c2
aj ≥ 1.

(3.19)

Finally, the performance measures for the entire network are calculated. The

throughput is given by

d =
n∑

i=1

di. (3.20)
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The total rate of service completions is

s =
n∑

j=1

sj =
n∑

j=1

λj (3.21)

where the rate of service completions, sj, at node j is equivalent to the arrival rate,

λj, at node j.

The overall steady-state mean time spent in the network is based on an entity

that visits every node in the network,

W = W1 + W2 + · · ·+ Wn. (3.22)

The other three overall steady-state performance measures for the network are found

in a similar manner:

Wq = Wq1 + Wq2 + · · ·+ Wqn , (3.23)

L = L1 + L2 + · · ·+ Ln, (3.24)

Lq = Lq1 + Lq2 + · · ·+ Lqn . (3.25)

This concludes the review of general results for a single-class model. Next,

the equations and procedures specific to each of the four queueing network model

scenarios are described.

3.2.1 Low Resolution, Single-Class Model

The low resolution, single-class queueing network model consists of four tan-

dem nodes, one for each JRSOI stage. Flow is directed sequentially and once an

entity enters the network it remains in the network until it completes service at

the integration node. No distinction is made between pax and cargo entities. Each

node has a single server and operates according to the first come, first served (FCFS)
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queueing discipline. Entities are neither created nor combined at the nodes, meaning

bulk arrivals and departures are not modeled. The routing matrix R is

R =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




.

The simplistic structure of the routing matrix is due to the tandem configura-

tion of the feed-forward network of Figure 3.1. Using Equation (3.1), the computed

arrival rates to each node are thus

λ1 = λ0,1,

λ2 = λ0,2 + λ1 = λ0,2 + λ0,1,

λ3 = λ0,3 + λ2 = λ0,3 + λ0,2 + λ0,1,

λ4 = λ0,4 + λ3 = λ0,4 + λ0,3 + λ0,2 + λ0,1.

This enables calculation of the traffic intensities. Since mj = 1 for all j,

ρj = λj/µj, j = 1, 2, 3, 4.

The arrival rates to node j from node i are found using Equation (3.4)

λ1,2 = λ1r1,2 = λ1 = λ0,1,

λ2,3 = λ2r2,3 = λ2 = λ0,2 + λ0,1,

λ3,4 = λ3r3,4 = λ3 = λ0,3 + λ0,2 + λ0,1,

λ4,0 = λ4r4,0 = λ4 = λ0,4 + λ0,3 + λ0,2 + λ0,1,

where λi,j = 0 otherwise.
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The proportion of node j arrivals from node i is found using Equation (3.5) in

the following manner:

p0,1 = λ0,1/λ1 = λ0,1/λ0,1 = 1,

p0,2 = λ0,2/λ2 = λ0,2/ (λ0,2 + λ0,1) ,

p0,3 = λ0,3/λ3 = λ0,3/ (λ0,3 + λ0,2 + λ0,1) ,

p0,4 = λ0,4/λ4 = λ0,4/ (λ0,4 + λ0,3 + λ0,2 + λ0,1) ,

p1,2 = λ1,2/λ2 = λ0,1/ (λ0,2 + λ0,1) ,

p2,3 = λ2,3/λ3 = (λ0,2 + λ0,1) / (λ0,3 + λ0,2 + λ0,1) ,

p3,4 = λ3,4/λ4 = (λ0,3 + λ0,2 + λ0,1) / (λ0,4 + λ0,3 + λ0,2 + λ0,1) ,

where pi,j = 0 otherwise.

The departure rates out of the network from the nodes are calculated according

to Equation (3.6)

dj = 0, j = 1, 2, 3,

d4 = λ4 =
4∑

j=1

λ0,j.
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The approximated squared coefficients of variation for the arrival processes to each

node are found using Equation (3.7)

c2
a1 = a1 +

4∑
i=1

c2
aibi,1 = a1,

c2
a2 = a2 +

4∑
i=1

c2
aibi,2 = a2 + c2

a1b1,2,

c2
a3 = a3 +

4∑
i=1

c2
aibi,3 = a3 + c2

a2b2,3,

c2
a4 = a4 +

4∑
i=1

c2
aibi,4 = a4 + c2

a3b3,4,

where the variability constants aj and bi,j are calculated using Equations (3.8) and

(3.9), respectively

a1 = 1 + w1

(
c2
01 − 1

)
,

a2 = 1 + w2

{[(
λ0,2

λ0,2+λ0,1

)
c2
0,2 − 1

]
+

(
λ0,1

λ0,2+λ0,1

)(
λ0,1

µ1

)2
x1

}
,

a3 = 1 + w3

{[(
λ0,3

λ0,3+λ0,2+λ0,1

)
c2
03 − 1

]
+

(
λ0,2+λ0,1

λ0,3+λ0,2+λ0,1

)(
λ0,2+λ0,1

µ2

)2
x2

}
,

a4 = 1+w4

{[(
λ0,4

λ0,4+λ0,3+λ0,2+λ0,1

)
c2
03 − 1

]
+

(
λ0,3+λ0,2+λ0,1

λ0,4+λ0,3+λ0,2+λ0,1

)(
λ0,3+λ0,2+λ0,1

µ3

)2
x3

}
,

aj = 0, otherwise,

and

b1,2 = w2

[
λ0,1

λ0,2 + λ0,1

] [
1−

(
λ0,1

µ1

)2
]

,

b2,3 = w3

[
λ0,2 + λ0,1

λ0,3 + λ0,2 + λ0,1

] [
1−

(
λ0,2 + λ0,1

µ2

)2
]

,

b3,4 = w4

[
λ0,3 + λ0,2 + λ0,1

λ0,4 + λ0,3 + λ0,2 + λ0,1

] [
1−

(
λ0,3 + λ0,2 + λ0,1

µ3

)2
]

,

bi,j = 0, otherwise.
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The values for the variables xj, wj, and vj, based on Equations (3.10), (3.11), and

(3.12), respectively, are

xj = max
{
c2
sj, 0.2

}
, j = 1, 2, 3, 4,

w1 = 1,

w2 =

{
1 + 4

[
1− (λ0,2 + λ0,1)

µ2

]2
[

(λ0,2 + λ0,1)
2

(
λ2

0,2 + λ2
0,1

) − 1

]}−1

,

w3 =

{
1 + 4

[
1− (λ0,3 + λ0,2 + λ0,1)

µ3

]2
[

(λ0,3 + λ0,2 + λ0,1)
2

(λ0,2 + λ0,1)
2 + λ2

0,3

− 1

]}−1

,

w4 =

{
1 + 4

[
1− (λ0,4 + λ0,3 + λ0,2 + λ0,1)

µ4

]2
[

(λ0,4 + λ0,3 + λ0,2 + λ0,1)
2

(λ0,3 + λ0,2 + λ0,1)
2 + λ2

0,4

− 1

]}−1

,

and

v1 = 1,

v2 =
(λ0,2 + λ0,1)

2

λ2
0,2 + λ2

0,1

,

v3 =
(λ0,3 + λ0,2 + λ0,1)

2

λ2
0,3 + (λ0,2 + λ0,1)

2 ,

v4 =
(λ0,4 + λ0,3 + λ0,2 + λ0,1)

2

λ2
0,4 + (λ0,3 + λ0,2 + λ0,1)

2 .

The total throughput and total rate of service for the network, given by Equa-

tions (3.20) and (3.21) respectively, are

d = λ0,4 + λ0,3 + λ0,2 + λ0,1, (3.26)

and

s = λ0,4 + 2λ0,3 + 3λ0,2 + 4λ0,1. (3.27)
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The remaining performance measures of interest for each node and the network

as a whole can be calculated using Equations (3.13)-(3.19) and (3.22)-(3.25).

3.2.2 Low Resolution, Multi-Class Model

The network topology for the low resolution, multi-class queueing network

model is identical to that of the low resolution, single-class model. However, this

model incorporates four classes of entities: pax, outsize cargo, oversize cargo, and

bulk cargo. Since each class can enter the network at any of the four nodes, each

class is considered to have four distinct routes depending upon where it entered the

network. Therefore, there are 16 class/route combinations. The reception, staging,

onward movement, and integration nodes are denoted as nodes 1, 2, 3, and 4 respec-

tively. Pax, outsize cargo, oversize cargo, and bulk cargo class/routes are denoted by

the subscripts Pi, CTi, CVi, and CBi respectively where i = 1, 2, 3, 4 indicates the

route starting at node i. It is assumed that the routing matrix is state-independent.

Each node operates according to the first come, first served (FCFS) queueing dis-

cipline and has a single server; however, the service rate is dependent upon the

class/route. Entities are neither created nor combined at the nodes, meaning bulk

arrivals and departures are not modeled.

For models with multiple classes, the number of nodes on class/route k, denoted

by nk, must be determined. Based on the information above, the nk for this model

configuration are

nPj = nCTj = nCV j = nCBj = 5− j, j = 1, 2, 3, 4. (3.28)

This simply indicates that entities entering the network at the reception node have

four nodes on their route, entities entering the network at the staging node have

three nodes on their route, etc. Let nk,j indicate the jth node visited by class/route
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k. Then

nK1,1 = 1 nK1,2 = 2 nK1,3 = 3 nK1,4 = 4

nK2,1 = 2 nK2,2 = 3 nK2,3 = 4

nK3,1 = 3 nK3,2 = 4

nK4,1 = 4,

where K ∈ {P,CT,CV,CB}. As an example nCV 3,2 = 4 indicates that the second

node on the route for class/route CV 3 is the integration node (node 4).

The external arrival rates for class/route k are denoted by λ̂k. These are

combined to form aggregate external arrival rates for each node using the following

equation:

λ0,j =
r∑

k=1

λ̂kI{k:nk,1=j}, (3.29)

where I is the indicator function (i.e., IK = 1 when k ∈ K and IK = 0 otherwise)

and r is the number of possible class/routes. This means the external arrival rate

to node j is the sum of all external arrival rates of class/routes that have node j as

the first node in their route. Therefore, the external arrival rates are

λ0,j = λ̂Pj + λ̂CTj + λ̂CV j + λ̂CBj, j = 1, 2, 3, 4.

Similarly, the rates of flow from node i to node j are obtained by using the following

equation where k represents the class/route:

λi,j =
r∑

k=1

nk−1∑

l=1

λ̂kI{(k,l):nk,l=i,nk,l+1=j}, (3.30)

This function merely sums the external arrival rates λ̂k for all those class/routes

whose route includes a direct flow from node i to node j. (If a class/route k includes

m such direct flows from node i to node j then λ̂k is added m times when calculating
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λi,j.) The rates for this model configuration are as follows:

λ1,2 =
1∑

i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)
= λ0,1,

λ2,3 =
2∑

i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)
= λ0,1 + λ0,2,

λ3,4 =
3∑

i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)
= λ0,1 + λ0,2 + λ0,3,

where λi,j = 0 otherwise. The departure rate from the network out of node i is

di = λi,0 =
r∑

k=1

λ̂kI{k:nk,nk
=i}, (3.31)

This means the departure rate from node i is the sum of all external arrival rates of

class/routes that have node i as the last node in their route. Therefore, the departure

rates are

di = λi,0 = 0, i = 1, 2, 3,

d4 = λ4,0 =
4∑

i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)
= λ0,1 + λ0,2 + λ0,3 + λ0,4.

The proportion of entities at node i that proceed to node j is

ri,j =
λi,j

λi,0 +
∑4

h=1 λi,h

. (3.32)

By no coincidence, the R matrix turns out to be the same as for the low resolution,

single-class configuration:

R =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




.
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Using Equation (3.1), the computed arrival rates to each node are thus

λ1 = λ0,1,

λ2 = λ0,2 + λ0,1,

λ3 = λ0,3 + λ0,2 + λ0,1,

λ4 = λ0,4 + λ0,3 + λ0,2 + λ0,1.

The proportion of arrivals to node j coming from node i is found using Equation

(3.5) in the following manner:

p0,1 = λ0,1/λ1 = λ0,1/λ0,1 = 1,

p0,2 = λ0,2/λ2 = λ0,2/ (λ0,2 + λ0,1) ,

p0,3 = λ0,3/λ3 = λ0,3/ (λ0,3+, λ0,2 + λ0,1) ,

p0,4 = λ0,4/λ4 = λ0,4/ (λ0,4 + λ0,3 + λ0,2 + λ0,1) ,

p1,2 = λ1,2/λ2 = λ0,1/ (λ0,2 + λ0,1) ,

p2,3 = λ2,3/λ3 = (λ0,2 + λ0,1) / (λ0,3 + λ0,2 + λ0,1) ,

p3,4 = λ3,4/λ4 = (λ0,3 + λ0,2 + λ0,1) / (λ0,4 + λ0,3 + λ0,2 + λ0,1) ,

where pi,j = 0 otherwise.

Next, aggregate service-time parameters are found. Let µ̂k,l be the service rate

at the lth node of route k. Then the aggregate service rates at each node are found

by averaging the class/route specific service rates:

µj =

∑r
k=1

∑nk

l=1 λ̂kI{(k,l):nk,l=j}
∑r

k=1

∑nk

l=1

(
λ̂k/µ̂k,l

)
I{(k,l):nk,l=j}

, (3.33)

For each node j, the numerator sums the external arrival rates for the class/routes

that include j somewhere in their route. If a node is visited m times on a given

route, then the external arrival rate for that class/route is included m times in the
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sum. The denominator is equivalent to the numerator with the exception that each

summand is divided by the service rate at node j according to where j occurs on the

corresponding class/route. The service rates for this model configuration are thus

µ1 =
λ̂P1 + λ̂CT1 + λ̂CV 1 + λ̂CB1∑

K
λ̂K1

µ̂K1,1

,

µ2 =

∑2
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)

∑
K

(
λ̂K1

µ̂K1,2
+ λ̂K2

µ̂K2,1

) ,

µ3 =

∑3
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)

∑
K

(
λ̂K1

µ̂K1,3
+ λ̂K2

µ̂K2,2
+ λ̂K3

µ̂K3,1

) ,

µ4 =

∑4
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)

∑
K

(
λ̂K1

µ̂K1,4
+ λ̂K2

µ̂K2,3
+ λ̂K3

µ̂K3,2
+ λ̂K4

µ̂K4,1

) ,

where K ∈ {P, CT,CV, CB}. The traffic intensity ρj can now be found for each

node by

ρj = λj/µj, j = 1, 2, 3, 4.

Let ĉ2
sk,l be the service squared coefficient of variation at the lth node of route

k. Then the aggregate service squared coefficients of variation c2
sj are found using

the following equation which is similar in construction to the one used for calculating

the aggregate service rates:

c2
sj =





∑r
k=1

∑nk

l=1

(
λ̂k/µ̂

2
k,l

) (
ĉ2
sk,l + 1

)
I{(k,l):nk,l=j}

∑r
k=1

∑nk

l=1 λ̂kI{(k,l):nk,l=j}



− 1. (3.34)
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The aggregate service squared coefficients of variation for this model configuration

are

c2
s1 =





µ2
1

∑
K

λ̂K1(ĉ2sK1,1+1)
µ̂2

K1,1

λ̂P1 + λ̂CT1 + λ̂CV 1 + λ̂CB1




− 1,

c2
s2 =





µ2
2

∑
K

(
λ̂K1(ĉ2sK1,2+1)

µ̂2
K1,2

+
λ̂K2(ĉ2sK2,2+1)

µ̂2
K2,1

)

∑2
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)




− 1,

c2
s3 =





µ2
3

∑
K

(
λ̂K1(ĉ2sK1,3+1)

µ̂2
K1,3

+
λ̂K2(ĉ2sK2,2+1)

µ̂2
K2,2

+
λ̂K3(ĉ2sK3,1+1)

µ̂2
K3,1

)

∑3
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)




− 1,

c2
s4 =





µ2
4

∑
K

(
λ̂K1(ĉ2sK1,4+1)

µ̂2
K1,4

+
λ̂K2(ĉ2sK2,3+1)

µ̂2
K2,3

+
λ̂K3(ĉ2sK3,2+1)

µ̂2
K3,2

+
λ̂K4(ĉ2sK4,1+1)

µ̂2
K4,1

)

∑4
i=1

(
λ̂Pi + λ̂CTi + λ̂CV i + λ̂CBi

)




− 1.

Let ĉ2
0k be the arrival squared coefficient of variation for route k. Then the ag-

gregate external arrival square coefficients of variation are found using the following

equation:

c2
0j = (1− ŵj) + ŵj

{
r∑

k=1

ĉ2
0k

(
λ̂kI{k:nk,1=j}∑r
l=1 λ̂lI{l:nl,1=j}

)}
, j = 1, 2, 3, 4 (3.35)

where the ŵj are defined as

ŵj =
{
1 + 4 (1− ρj)

2 (v̂j − 1)
}−1

, (3.36)

and the v̂j are defined as

v̂j =





r∑

k=1

(
λ̂kI{k:nk,1=j}∑r
l=1 λ̂lI{l:nl,1=j}

)2




−1

, j = 1, 2, 3, 4. (3.37)
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Thus, for this model configuration, the aggregate external arrival squared coefficients

of variation are

c2
0j = (1− ŵj) + ŵj

{∑
K

ĉ2
0Kj

(
λ̂Kj

λ̂Pj + λ̂CTj + λ̂CV j + λ̂CBj

)}
,

where the ŵj can be found using Equation (3.36) and the v̂j are

v̂j =





∑
K

(
λ̂Kj

λ̂Pj + λ̂CTj + λ̂CV j + λ̂CBj

)2




−1

=





∑
K

(
λ̂Kj

λ̂j

)2




−1

,

where K ∈ {P,CT,CV, CB} and j = 1, 2, 3, 4.

Now that the c0j have been found, the remaining equations can be worked out.

These are identical to those of the low resolution, single-class configuration starting

with the equations to approximate the squared coefficients of variation for the arrival

processes at each node (Equations (3.7) to (3.25)).

3.2.3 High Resolution, Single-Class Model

The high resolution, single-class queueing network model consists of twenty-

one nodes comprising four subnetworks representing the four stages of JRSOI (See

Table 3.1). This model is notional and is based on information from multiple sources

including JP4-01.8 [9], the Defense Transportation Regulation [13], and subject mat-

ter experts. It was designed to capture the salient features and network constructs

of the generalized JRSOI process, not to model the specific network for every sit-

uation and operating location. Real-world JRSOI networks are classified and their

configurations are situation- and operating-location specific. In practice, QNA can

analyze the network configuration specific to each situation and operating location

to a desired level of resolution.

The model includes tandem constructs, probabilistic branching, and a fork-join

node. Flow is directed sequentially, and once an entity enters the network, it remains
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Table 3.1 Network node descriptions.

Node Description
1 Offload pax and cargo at APOD
2 Clear pax and cargo
3 Move pax and cargo to holding area
4 In-process pax (reception phase)
5 Inspect vehicles and perform maintenance
6 Breakdown and reorganize pallets
7 Hold sensitive cargo
8 Move pax and cargo to marshalling area
9 Marshall pax and cargo
10 Move pax and cargo to staging area
11 Receive and inspect cargo
12 In-process pax (staging phase)
13 Conduct operability checks on cargo
14 Conduct training of pax as required
15 Prepare pax and cargo for onward movement
16 Plane
17 Train
18 Convoy
19 Receive and inspect cargo
20 In-process pax (integration phase)
21 Conduct integration

in the network until it completes service at the integration node. Entities enter the

network at node 1 or node 10. No distinction is made between pax and cargo entities.

Each node has a single server and operates according to the first come, first served

(FCFS) queueing discipline. Bulk arrivals and departures are not considered.

One of the unique features of this model is the incorporation of a fork-join

queueing station. A fork-join queueing station is one where, upon entering into

service, an entity awaits multiple concurrent service activities. Therefore, service for

that entity is completed upon completion of the service process taking the longest

amount of time to complete. In a stochastic environment, this will not necessarily

be the same process every time.
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Figure 3.2 Graphical depiction of a high resolution JRSOI network.

Based on assigned routing probabilities, the routing matrix R is

R =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 .4 .2 .3 0 0 0 0 0 0 0 0 0 .1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 .1 .9 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 .7 .3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .4 .6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .7 .3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.
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The simplistic structure of the routing matrix is due to the nature of the model’s

feed-forward network. Using Equation (3.1), the computed arrival rates are thus

λ1 = λ2 = λ3 = λ0,1,

λ4 = .4λ3 = .4λ0,1,

λ5 = .2λ3 = .2λ0,1,

λ6 = .3λ3 = .3λ0,1,

λ7 = .1λ6 = .03λ0,1,

λ8 = λ4 + λ5 + .9λ6 + λ7 = .9λ0,1,

λ9 = λ8 = .9λ0,1,

λ10 = λ0,10 + λ9 = λ0,10 + .9λ0,1,

λ11 = .7λ10 = .7λ0,10 + .63λ0,1,

λ12 = .3λ10 = .3λ0,10 + .27λ0,1,

λ13 = λ11 = .7λ0,10 + .63λ0,1,

λ14 = λ12 = .3λ0,10 + .27λ0,1,

λ15 = λ13 + λ14 = λ0,10 + .9λ0,1,

λ16 = .1λ3 = .1λ0,1,

λ17 = .4λ15 = .4λ0,10 + .36λ0,1,

λ18 = .6λ15 = .6λ0,10 + .54λ0,1,

λ19 = λ16 + λ17 + .7λ18 = .82λ0,10 + .838λ0,1,

λ20 = .3λ18 = .18λ0,10 + .162λ0,1,

λ21 = λ19 + λ20 = λ0,10 + λ0,1.

This enables calculation of the traffic intensities. Since mj = 1 for all j,

ρj = λj/µj, j = 1, 2, ..., 21.
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The arrival rates to node j from node i are found using Equation (3.4)

λ1,2 = λ1r1,2 = λ1 = λ0,1,

λ2,3 = λ2r2,3 = λ2 = λ0,1,

λ3,4 = λ3r3,4 = .4λ3 = .4λ0,1,

λ3,5 = λ3r3,5 = .2λ3 = .2λ0,1,

λ3,6 = λ3r3,6 = .3λ3 = .3λ0,1,

λ3,16 = λ3r3,16 = .1λ3 = .1λ0,1,

λ4,8 = λ4r4,8 = λ4 = .4λ0,1,

λ5,8 = λ5r5,8 = λ5 = .2λ0,1,

λ6,7 = λ6r6,7 = .1λ6 = .03λ0,1,

λ6,8 = λ6r6,8 = .9λ6 = .27λ0,1,

λ7,8 = λ7r7,8 = λ7 = .03λ0,1,

λ8,9 = λ8r8,9 = λ8 = .9λ0,1,

λ9,10 = λ9r9,10 = λ9 = .9λ0,1,

λ10,11 = λ9r10,11 = .7λ10 = .7λ0,10 + .63λ0,1,

λ10,12 = λ10r10,12 = .3λ10 = .3λ0,10 + .27λ0,1,

λ11,13 = λ11r11,13 = λ11 = .7λ0,10 + .63λ0,1,

λ12,14 = λ12r12,14 = λ12 = .3λ0,10 + .27λ0,1,

λ13,15 = λ13r13,15 = λ13 = .7λ0,10 + .63λ0,1,

λ14,15 = λ14r14,15 = λ14 = .3λ0,10 + .27λ0,1,

λ15,17 = λ15r15,17 = .4λ15 = .4λ0,10 + .36λ0,1,

λ15,18 = λ15r15,18 = .6λ15 = .6λ0,10 + .54λ0,1,

λ16,19 = λ16r16,19 = λ16 = .1λ0,1,

λ17,19 = λ17r17,19 = λ17 = .4λ0,10 + .36λ0,1,

λ18,19 = λ18r18,19 = .7λ18 = .42λ0,10 + .378λ0,1,

λ18,20 = λ18r18,20 = .3λ18 = .18λ0,10 + .162λ0,1,

λ19,21 = λ19r19,21 = λ19 = .82λ0,10 + .838λ0,1,

λ20,21 = λ20r20,21 = λ20 = .18λ0,10 + .162λ0,1,

where λi,j = 0 otherwise.
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The proportion of node j arrivals from node i is found using Equation (3.5)

p0,1 = λ0,1/λ1 = 1,

p0,10 = λ0,10/λ10 = λ0,10/ (λ0,10 + .9λ0,1) ,

where p0,j = 0 otherwise for external arrivals and

p4,8 = λ4,8/λ8 = .4λ0,1/.9λ0,1 = 4/9,

p5,8 = λ5,8/λ8 = .2λ0,1/.9λ0,1 = 2/9,

p6,8 = λ6,8/λ8 = .27λ0,1/.9λ0,1 = 3/10,

p7,8 = λ7,8/λ8 = .03λ0,1/.9λ0,1 = 1/30,

p9,10 = λ9,10/λ10 = .9λ0,1/ (λ0,10 + .9λ0,1) ,

p13,15 = λ13,15/λ15 = (.7λ0,10 + .63λ0,1) / (λ0,10 + .9λ0,1) ,

p14,15 = λ14,15/λ15 = (.3λ0,10 + .27λ0,1) / (λ0,10 + .9λ0,1) ,

p16,19 = λ16,19/λ19 = (.1λ0,1) / (.82λ0,10 + .838λ0,1) ,

p17,19 = λ17,19/λ19 = (.4λ0,10 + .36λ0,1) / (.82λ0,10 + .838λ0,1) ,

p18,19 = λ18,19/λ19 = (.42λ0,10 + .378λ0,1) / (.82λ0,10 + .838λ0,1) ,

p19,21 = λ19,21/λ21 = (.82λ0,10 + .838λ0,1) / (λ0,10 + λ0,1) ,

p20,21 = λ20,21/λ21 = (.18λ0,10 + .162λ0,1) / (λ0,10 + λ0,1) ,

where pi,j = 1 for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (3, 16), (6, 7), (8, 9), (10, 11),

(10, 12), (11, 13), (12, 14), (15, 17), (15, 18), (16, 19), (18, 20)} and pi,j = 0 otherwise.

The departure rates out of the network from the nodes are, by Equation (3.6),

di = 0, i = 1, 2, ..., 20

d21 = λ21 =
21∑
i=1

λ0,i = λ0,10 + λ0,1.
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The approximated squared coefficients of variation for the arrival processes to

each node are found using Equation (3.7)

c2
a1 = a1 +

21∑
i=1

c2
aibi,1 = a1,

c2
a2 = a2 +

21∑
i=1

c2
aibi,2 = a2 + c2

a1b1,2,

c2
a3 = a3 +

21∑
i=1

c2
aibi,3 = a3 + c2

a2b2,3,

c2
a4 = a4 + c2

a3b3,4,

c2
a5 = a5 + c2

a3b3,5,

c2
a6 = a6 + c2

a3b3,6,

c2
a7 = a7 + c2

a6b6,7,

c2
a8 = a8 + c2

a4b4,8 + c2
a5b5,8 + c2

a6b6,8 + c2
a7b7,8,

c2
a9 = a9 + c2

a8b8,9,

c2
a10 = a10 + c2

a9b9,10,

c2
a11 = a11 + c2

a10b10,11,

c2
a12 = a12 + c2

a10b10,12,

c2
a13 = a13 + c2

a11b11,13,

c2
a14 = a14 + c2

a12b12,14,

c2
a15 = a15 + c2

a13b13,15 + c2
a14b14,15,

c2
a16 = a16 + c2

a3b3,16,

c2
a17 = a17 + c2

a15b15,17,

c2
a18 = a18 + c2

a15b15,18,

c2
a19 = a19 + c2

a16b16,19 + c2
a17b17,19 + c2

a18b18,19,

c2
a20 = a20 + c2

a18b18,20,

c2
a21 = a21 + c2

a19b19,21 + c2
a20b20,21,
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where the variability constants aj and bi,j are calculated using Equations (3.8) and

(3.9), respectively

aj = 1 + wj

{
(
p0,jc

2
0j − 1

)
+

n∑
i=1

pi,j

[
(1− ri,j) + ri,jρ

2
i xi

]
}

and

bi,j = wjpi,jri,j

(
1− ρ2

i

)
.

The values for the variables xj, wj, and vj, based on Equations (3.10), (3.11), and

(3.12), respectively, are

xj = max
{
c2
sj, 0.2

}
, j = 1, 2, 3, 4

and

wj =
[
1 + 4 (1− ρj)

2 (vj − 1)
]−1

,

with

vj =

(
21∑
i=0

p2
i,j

)−1

.

The total throughput for the network is given by

d = λ0,10 + λ0,1

and the total rate of service completions is

s = 7λ0,10 + 10.33λ0,1.
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The remaining performance measures of interest for each node and the network

as a whole can be calculated using Equations (3.13)-(3.19) and (3.22)-(3.25).

3.2.4 High Resolution, Multi-Class Model

The network topology for the high resolution, multi-class queueing network

model is identical to that of the high resolution, single-class model. However, this

model incorporates the four entity classes: pax, outsize cargo, oversize cargo, and

bulk cargo. Each possible route for each class, based on the probabilistic routing

given for the high resolution, single-class model, forms a distinct deterministic route

for this model. An additional route is added to account for combat units that enter

JRSOI already intact. In total, there are 13 routes for this model. The nodes are

described in Table 3.1. The routes are given in Table 3.2. It is assumed that the

routing matrix is state-independent. Each node operates according to the first come,

first served (FCFS) queueing discipline and has a single server; however, the service

rate is dependent upon the class and route. Bulk arrivals and departures are not

modeled.

Table 3.2 Enumeration of high resolution, multi-class network routes.

Route No. Label Path nk

1 Pax1 1,2,3,4,8,9,10,12,14,15,18,20,21 13
2 Pax2 10,12,14,15,18,20,21 7
3 Outsize1 1,2,3,5,8,9,10,11,13,15,17,19,21 13
4 Outsize2 10,11,13,15,18,19,21 7
5 Oversize1 1,2,3,6,8,9,10,11,13,15,17,19,21 13
6 Oversize2 1,2,3,6,7,8,9,10,11,13,15,18,19,21 14
7 Oversize3 1,2,3,5,8,9,10,11,13,15,18,19,21 13
8 Bulk1 1,2,3,6,8,9,10,11,13,15,17,19,21 13
9 Bulk2 1,2,3,6,8,9,10,11,13,15,18,19,21 13
10 Bulk3 1,2,3,6,7,8,9,10,11,13,15,17,19,21 14
11 Bulk4 1,2,3,6,7,8,9,10,11,13,15,18,19,21 14
12 Bulk5 10,11,13,15,18,20,21 7
13 Unit 1,2,3,16,19,21 6
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The number of nodes on route k, denoted by nk, are given in Table 3.2. In

addition, the nk,j values, indicating the jth node visited by route k, can easily be

determined using the information in Table 3.2.

The external arrival rates for route k are denoted by λ̂k. These are combined to

form aggregate external arrival rates for each of the 21 nodes using Equation (3.29)

λ0,j =
13∑

k=1

λ̂kI{k:nk,1=j}, j = 1, 2, ..., 21

where I is the indicator function and the summation is over all possible routes. This

means the external arrival rate to node j is the sum of all external arrival rates of

routes that have node j as their first node. Therefore, the external arrival rates are

λ0,1 = λ̂1 + λ̂3 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11 + λ̂13,

λ0,10 = λ̂2 + λ̂4 + λ̂12,

λ0,j = 0, otherwise.

Similarly, the rates of flow from node i to node j are obtained by using Equation

(3.30) where k represents the route:

λij =
13∑

k=1

nk−1∑

l=1

λ̂kI{(k,l):nk,l=i,nk,l+1=j}, i, j = 1, 2, ..., 21.

This function sums the external arrival rates λ̂k for all routes that include a direct

flow from node i to node j. (If route k includes m direct flows from node i to

node j then λ̂k is added m times when calculating λi,j.) The rates for this model
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configuration are as follows:

λ1,2 = λ2,3 = λ̂1 + λ̂3 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11 + λ̂13,

λ3,4 = λ4,8 = λ̂1,

λ3,5 = λ5,8 = λ̂3 + λ̂7,

λ3,6 = λ̂5 + λ̂6 + λ̂8 + λ̂9 + λ̂10 + λ̂11,

λ3,16 = λ16,19 = λ̂13,

λ6,7 = λ7,8 = λ̂6 + λ̂10 + λ̂11,

λ6,8 = λ̂5 + λ̂8 + λ̂9,

λ8,9 = λ9,10 = λ̂1 + λ̂3 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11,

λ10,11 = λ11,13 = λ13,15 = λ̂3 + λ̂4 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11 + λ̂12,

λ10,12 = λ12,14 = λ14,15 = λ̂1 + λ̂2,

λ15,17 = λ17,19 = λ̂3 + λ̂5 + λ̂8 + λ̂10,

λ15,18 = λ̂1 + λ̂2 + λ̂4 + λ̂6 + λ̂7 + λ̂9 + λ̂11 + λ̂12,

λ18,19 = λ̂4 + λ̂6 + λ̂7 + λ̂9 + λ̂11 + λ̂12,

λ18,20 = λ20,21 = λ̂1 + λ̂2,

λ19,21 = λ̂3 + λ̂4 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11 + λ̂12 + λ̂13,

where λi,j = 0 otherwise.

Likewise, the departure rate from the network out of node i is given by Equation

(3.31)

di = λi,0 =
13∑

k=1

λ̂kI{k:nk,nk
=i}.
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This means the departure rate from node i is the sum of all external arrival rates of

routes that have node i as their last node. Therefore, the departure rates are

di = λi,0 = 0, i = 1, 2, ..., 20,

d21 = λ4,0 =
13∑
i=1

λ̂i.

The proportion of entities at node j that go next to node i is found according

to Equation (3.32) by

rij =
λi,j

λi,0 +
∑21

h=1 λi,h

.

The values for this model are

r3,4 = λ3,4/(λ3,4 + λ3,5 + λ3,6 + λ3,16),

r3,5 = λ3,5/(λ3,4 + λ3,5 + λ3,6 + λ3,16),

r3,6 = λ3,6/(λ3,4 + λ3,5 + λ3,6 + λ3,16),

r3,16 = λ3,16/(λ3,4 + λ3,5 + λ3,6 + λ3,16),

r6,7 = λ6,7/(λ6,7 + λ6,8),

r6,8 = λ6,8/(λ6,7 + λ6,8),

r10,11 = λ10,11/(λ10,11 + λ10,12),

r10,12 = λ10,12/(λ10,11 + λ10,12),

r15,17 = λ15,17/(λ15,17 + λ15,18),

r15,18 = λ15,18/(λ15,17 + λ15,18),

r18,19 = λ18,19/(λ18,19 + λ18,20),

r18,20 = λ18,20/(λ18,19 + λ18,20),

where ri,j = 1 for (i, j) ∈ {(1, 2), (2, 3), (4, 8), (5, 8), (7, 8), (8, 9), (9, 10), (11, 13), (12, 14),

(13, 15), (14, 15), (16, 19), (17, 19), (19, 21), (20, 21)} and ri,j = 0 otherwise. The rout-
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ing matrix R is identical in structure to that of the high resolution, single-class model

but some of the nonzero entries differ depending on the ri,j values calculated above.

Then, by Equation (3.1), the computed arrival rates to each node are

λ1 = λ0,1 = λ̂1 + λ̂3 + λ̂5 + λ̂6 + λ̂7 + λ̂8 + λ̂9 + λ̂10 + λ̂11 + λ̂13,

λ2 = λ1r1,2,

λ3 = λ2r2,3,

λ4 = λ3r3,4,

λ5 = λ3r3,5,

λ6 = λ3r3,6,

λ7 = λ6r6,7,

λ8 = λ4r4,8 + λ5r5,8 + λ6r6,8 + λ7r7,8,

λ9 = λ8r8,9,

λ10 = λ0,10 + λ9r9,10 = λ̂2 + λ̂4 + λ̂12 + λ9r9,10,

λ11 = λ10r10,11,

λ12 = λ10r10,12,

λ13 = λ11r11,13,

λ14 = λ12r12,14,

λ15 = λ13r13,15 + λ14r14,15,

λ16 = λ3r3,16,

λ17 = λ15r15,17,

λ18 = λ15r15,18,

λ19 = λ16r16,19 + λ17r17,19 + λ18r18,19,

λ20 = λ18r18,20,

λ21 = λ19r19,21 + λ20r20,21,
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The proportion of arrivals to node j coming from node i are found using Equa-

tion (3.5)

p0,1 = λ0,1/λ1 = λ0,1/λ0,1 = 1,

pi,j = λi,j/λj,

for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (3, 16), (4, 8), (5, 8), (6, 7), (6, 8), (7, 8), (8, 9),

(9, 10), (10, 11), (10, 12), (11, 13), (12, 14), (13, 15), (14, 15), (15, 17), (15, 18), (16, 19),

(17, 19), (18, 19), (18, 20), (19, 21), (20, 21)}, and pi,j = 0 otherwise.

Next, aggregate service-time parameters are found. The aggregate service rates

at each node are found by averaging the route specific service rates according to

Equation (3.33)

µj =

∑13
k=1

∑nk

l=1 λ̂kI{(k,l):nk,l=j}
∑13

k=1

∑nk

l=1

(
λ̂k/µ̂k,l

)
I{(k,l):nk,l=j}

, j = 1, 2, ..., 21.

For each node j, the numerator sums the external arrival rates for the routes that

include j somewhere in their route. If a node is visited m times on a given route

then the external arrival rate for that route is included m times in the sum. The

denominator is equivalent to the numerator with the exception that each summand is

divided by the service rate at node j according to where j occurs on the corresponding

route. Define R as the set of all possible routes through the network. The service

rates for this model configuration are thus

µj =
λj∑

i∈Rj

λ̂j

µ̂j,i

j = 1, 2, ..., 21,

where Rj={r ∈ R: r passes through node j}. The Rj for this model are given in

Table 3.3
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Table 3.3 Routes passing through each network node.

Node (j) Rj

1,2,3 {1,3,5,6,7,8,9,10,11,13}
4 {1}
5 {3,7}
6 {5,6,8,9,10,11}
7 {6,10,11}

8,9 {1,3,5,6,7,8,9,10,11}
10,15 {1,2,3,4,5,6,7,8,9,10,11,12}
11,13 {3,4,5,6,7,8,9,10,11,12}

12,14,20 {1,2}
16 {13}
17 {3,5,8,10}
18 {1,2,4,6,7,9,11,12}
19 {3,4,5,6,7,8,9,10,11,12,13}
21 {1,2,3,4,5,6,7,8,9,10,11,12,13}

The traffic intensities ρj can now be found for each node by

ρj = λj/µj, j = 1, 2, ..., 21.

The aggregate service squared coefficients of variation c2
sj are found using Equa-

tion (3.34)

c2
sj =





∑13
k=1

∑nk

l=1

(
λ̂k/µ̂

2
k,l

) (
ĉ2
sk,l + 1

)
I{(k,l):nk,l=j}

∑13
k=1

∑nk

l=1 λ̂kI{(k,l):nk,l=j}



− 1, j = 1, 2, ...21.

Hence, the aggregate service squared coefficients of variation for this model configu-

ration are

c2
sj =





µ2
j

λj


∑

i∈Rj

λ̂i

µ̂2
j,i

(
ĉ2
j,i + 1

)





− 1, j = 1, 2, ..., 21,

where Rj is defined as in Table 3.3.
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The aggregate external arrival square coefficients of variation are found using

Equation (3.35)

c2
0j = (1− ŵj) + ŵj

{
13∑

k=1

ĉ2
0k

(
λ̂kI{k:nk,1=j}∑13
l=1 λ̂lI{l:nl,1=j}

)}
, j = 1, 2, ..., 21

where the ŵj are defined by Equation (3.36)

ŵj =
{
1 + 4 (1− ρj)

2 (v̂j − 1)
}−1

,

and the v̂j are defined by Equation (3.37)

v̂j =





13∑

k=1

(
λ̂kI{k:nk,1=j}∑13
l=1 λ̂lI{l:nl,1=j}

)2




−1

, j = 1, 2, ..., 21.

Thus, for this model configuration, the aggregate external arrival squared coefficients

of variation are

c2
01 = 1− ŵ1 +

ŵ1

λ0,1

∑
I

c2
i λ̂i, I = {1, 3, 5, 6, 7, 8, 9, 10, 11, 13},

c2
010 = 1− ŵ10 +

ŵ10

λ0,10

{
c2
2λ̂2 + c2

4λ̂4 + c2
12λ̂12

}
,

and c0j = 0 otherwise where the ŵj can be found using Equation (3.36) and the

nonzero v̂j are

v̂1 =
λ2

0,1

λ̂2
1 + λ̂2

3 + λ̂2
5 + λ̂2

6 + λ̂2
7 + λ̂2

8 + λ̂2
9 + λ̂2

10 + λ̂2
11 + λ̂2

13

,

v̂10 =
λ2

0,10

λ̂2
2 + λ̂2

4 + λ̂2
12

.

Now that the c0j have been found, the remaining equations can be worked out.

These remaining equations are identical to those of the high resolution, single-class
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configuration starting with the equations to approximate the squared coefficients of

variation for the arrival processes at each node (Equations (3.7) - (3.25)).

In this chapter, the JRSOI process has been defined and queueing networks

have been proposed as a viable approach for modeling it. Relevant queueing network

approximation equations have been provided and four distinct model configurations

have been presented based on four different class (single versus multiple) and reso-

lution (high versus low) combinations. In Chapter 4, the models are compared to

Monte-Carlo simulated values to validate their ability to produce computationally

expedient numerical results.
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4. Numerical Results

In this chapter, a numerical analysis of the models presented in Chapter 3

is provided. A queueing network analysis tool was developed for the purpose of

obtaining performance metrics for the JRSOI process. Corresponding computer

simulations were developed to be used in the model verification process. Several

example problems are provided as a basis for the output comparisons.

The analytical tool was developed using MATLABr computing software by

Mathworks, Inc. It is based on the QNA approximation algorithms presented in

Chapter 3. This tool requires four inputs for each stage of the network: the mean

and squared coefficient of variation of its external interarrival- and service-time dis-

tributions. The number of nodes, the number of entity classes, and the routing

matrix were hardcoded for each of the four defined models. In practice, however,

this information is required as input. The tool outputs traffic rates, traffic variability,

and congestion measures for each node and for the network as a whole.

The computer simulations were developed using Arenar simulation software.

External arrival processes were modeled using Create nodes. The low resolution,

single-class model had four Create nodes, one for each of the four possible entry

points. Similarly, the high resolution, single-class model had two Create nodes, one

for each of the two possible entry points. The low resolution, multi-class model,

had 16 Create nodes based on its 16 distinct class/route combinations. Similarly,

the high resolution, multi-class model, had 13 Create nodes based on its 13 distinct

route possibilities for pax, outsize-cargo, oversize-cargo, and bulk-cargo entity classes

and combat units arriving intact (complete units). No limit was placed on the total

number of arrivals allowed. A single entity per arrival was specified and the first

creation time for all entities was set at zero. At a given Create node, arrivals were

governed by probability distributions for external interarrival times.
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Stages were modeled using Process nodes. The models had four main Process

nodes representing the four phases of JRSOI. For the high resolution models, each

of these Process nodes was based on a submodel corresponding to the queueing

network within that node’s respective JRSOI phase. All Process nodes in the model

used the same framework. They operated according to Seize-Delay-Release action,

Medium priority, and Value Added allocation (this feature had no bearing on the

model). There was a single server at each node that allowed for varying service

rates depending on entity type. Delays were governed by probability distributions

for service times.

One long replication of one million 24-hour days was used in all models to ap-

proximate steady-state results. A 10,000 day warm-up period was used to overcome

the effect of initial conditions. The relevant statistics were initialized upon comple-

tion of the warm-up period. Each arrival and service process in the network utilized

a unique random number generating stream.

A set of input parameters was prescribed for each of the four models. The data

were chosen arbitrarily within sensible bounds. First, they were chosen such that the

stability condition was satisfied at every node, meaning the arrival rate was less than

the service rate. If the stability condition is not satisfied, the QNA equations are

invalid and the simulations experience an overload of queued entities. Second, the

selected traffic intensities were moderately high (between 80% and 100%) to more

accurately model the high intensity activity associated with real-world operations.

The prescribed input parameters were entered in the form of parametric prob-

ability distributions. The exponential distribution was set as the default distribution

for every node. While not necessary, only one non-exponential distribution was used

for each test. For example, when the gamma distribution with α = 2 was chosen to

model service rates, it was used to model service rates for every node in the network

(in this case, the β parameters were calculated based on the established service rates).

This was done to observe the effect of the selected parameterized distributions and
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their associated squared coefficients of variation on model performance. In practice,

any distribution can be specified for any process. Next, the input parameters used

for testing are prescribed.

4.1 Model Comparisons

Each of the four models presented in Chapter 3 was tested using a prescribed

set of input with the exception that the specified probability distributions, and their

corresponding squared coefficients of variation, were varied from test to test. Tests

are distinguished, in this analysis, by the parametric probability distributions used

in the simulation models. Results are tabulated for numerical comparison.

The performance measures Lq, L, Wq, W , and throughput d for each node and

for the network are directly related to each other (see Equations (3.13)-(3.17)) so

testing based on these measures would produce similar or identical results. Therefore,

it is reasonable to test only one of these measures as being representative of the

others. The arbitrarily selected performance measure chosen for testing was Lq, the

average long-run number of entities in the queue.

The overall category in the summary tables is based on summing the individual

results across the network, and thus, represents the average long-run time spent in

the network for entities arriving through node one and proceeding through every

node in the network. For the high resolution models, such entities are imaginary

because none of the defined entities traveled through every node. The purpose of

this category is to provide an overall view of network performance. If overall network

performance measures are desired for entities not fitting this description, they can

be obtained by summing the performance measures for each node along the routes

of those entities.

The tables include 95% confidence interval half-widths for the simulated out-

put. It is important to note that, as the complexity of the model increases, the
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amount of simulation run length required to achieve sufficiently small half-widths

increases. However, during this analysis, fixed run lengths were used to limit ex-

perimentation time. Hence, the accuracy of the simulations is expected to decrease

for the more complex models. The run times for the simulations were primarily a

function of overall throughput but also of network size and complexity.

4.1.1 Low Resolution, Single-Class Model

This model represents the flow of a single type of entity (i.e., only pax or only

cargo) through the network shown in Figure 3.1. The external arrival and service

rates for this model, in number of occurrences per hour, are provided in Table 4.1.

Table 4.1 Rates for low resolution, single-class model (hr−1).

Node External Arrival Service
1 4 5
2 3 9
3 3 12
4 3 15

The first test was based on exponentially distributed interarrival and service

times. This model was a product-form network; therefore, all four nodes could be

analyzed individually as M/M/1 queues [4]. Hence, exact analytical results could

be obtained for each node thus providing a basis for verifying both QNA and the

simulation model. The results for this test are contained in Table 4.2. The relative

error of the QNA and simulation results to the analytical results is shown. The

exponential distribution has a squared coefficient of 1.
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Table 4.2 Low resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and service times.

Node Analytical QNA Simulation
QNA
Error (%)

Simulation
Error (%)

95% CI
Half-width

1 3.2000 3.2000 3.1938 0.0000 0.1938 0.0081
2 2.7222 2.7222 2.7186 0.0000 0.1322 0.0058
3 4.1667 4.1667 4.1665 0.0000 0.0048 0.0084
4 5.6333 5.6333 5.6287 0.0000 0.0817 0.0130

Overall 15.7222 15.7222 15.7076 0.0000 0.0929 -

The QNA results were exact as expected thus providing some verification of

the QNA model. The low levels of relative error for the simulation output validated

the simulation model and indicated that the simulated run length was sufficiently

long for testing purposes. The simulation run time for this test was 5 hours and 24

minutes as compared to roughly 0.1 seconds for QNA.

For the second test, the exponential service time distributions were replaced

with gamma(2, β) service time distributions (See Appendix A). The first node could

be analyzed individually as an M/G/1 queue, but the others could not due to network

dependencies. Therefore, exact analytical results could be calculated for node 1 only.

The results for this test are contained in Table 4.3. The relative error of the QNA

results to the simulation results is shown. The gamma(2, β) distribution is known

as the Erlang distribution and has a squared coefficient of variation of 0.5.

Table 4.3 Low resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and gamma(2, β) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 2.4000 2.3953 0.1962 0.0048
2 1.8263 1.7740 2.9481 0.0031
3 2.6194 2.6692 1.8657 0.0046
4 3.3234 3.5140 5.4240 0.0079

Overall 10.2071 10.3525 1.4045 -

While not shown in the table, the QNA result is exact for the M/G/1 Reception

node. The errors for nodes 2 and 4 were slightly larger than those for nodes 1 and 3.
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This indicates a slight weakness by QNA to model the particular squared coefficient

of variation, traffic intensity, and network construct combinations represented by

these nodes. Nevertheless, all errors were generally low thus affirming QNA. The

simulation run time was 5 hours and 18 minutes as compared to about 0.1 seconds

for QNA.

The gamma(2, β) distributed service times were then replaced with Weibell(2,

γ) distributed service times (See Appendix A). The first node could be analyzed

individually as an M/G/1 queue but the others could not because of network depen-

dencies. Therefore, exact analytical results could be calculated for node 1 only. The

results for this test are contained in Table 4.4. The relative error of the QNA results

to the simulation results is shown. The Weibell(2, γ) distribution is known as the

Rayleigh distribution and has a squared coefficient of variation of (4/π− 1) ≈ .2732.

Table 4.4 Low resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and Weibell(2, γ) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 2.0372 2.0338 0.1672 0.0044
2 1.4160 1.3345 6.1072 0.0020
3 1.9078 1.9686 3.0885 0.0037
4 2.2581 2.5238 10.5278 0.0044

Overall 7.6752 7.8607 2.3598 -

The QNA result was exact for the M/G/1 Reception node as compared to

analytical results. The errors associated with nodes 2 and 4 were slightly large

indicating a possible cause for concern. The explanation for this behavior is the

same as for the previous test. The table reveals a degradation in performance for

this test as compared to the previous one. It is suspected that this was due to the

squared coefficient of variation for the service-time distribution being further away

from 1. The simulation run time was 5 hours and 45 minutes as compared to about

0.1 seconds for QNA.

4-6



Next, the gamma(2, β) distribution was used for all interarrival and service

times. All four nodes were G/G/1 queues. Therefore, exact analytical results could

not be calculated for nodes 2 through 4. Through great expenditure of effort, exact

analytical results could have been calculated for node 1; however, this was not done

here. The results for this test are contained in Table 4.5. The relative error of the

QNA results to the simulation results is shown.

Table 4.5 Low resolution, single-class results for steady-state queue lengths (Lq) using
gamma(2, β) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 1.5347 1.5095 1.6694 0.0053
2 1.4245 1.3185 8.0394 0.0034
3 2.1497 2.0021 7.3723 0.0056
4 2.8438 2.7647 2.8611 0.0062

Overall 7.9527 7.5948 4.7124 -

The complexity of the model increased greatly, due to the non-exponential

interarrival times, yet the performance of QNA was only slightly worse. All relative

errors were low thus affirming QNA. The simulation run time was 5 hours and 33

minutes as compared to 0.1 seconds for QNA.

Finally, the gamma(2, β) distribution was replaced with the Weibull(2, γ)

distribution in all instances. All four nodes were G/G/1 queues. Therefore, exact

analytical results could not be calculated for nodes 2 through 4. Although possible,

exact analytical results were not calculated for node 1. The results for this test are

contained in Table 4.6.
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Table 4.6 Low resolution, single-class results for steady-state queue lengths (Lq) using
Weibull(2, γ) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 0.7443 0.7623 2.3613 0.0011
2 0.8098 0.7280 11.2363 0.0007
3 1.2031 1.1291 6.5539 0.0010
4 1.5412 1.5180 1.5283 0.0018

Overall 4.2984 4.1374 3.8913 -

For the last two models, the larger errors corresponded to nodes 2 and 3 thus

indicating the contribution of non-exponential interarrival times to this network. It

can not be concluded, for these models, that the one with one with the squared

coefficient closer to 1 produced more accurate results. All the errors were reasonably

low thus affirming QNA. The simulation run time was 5 hours and 55 minutes as

compared to about 0.1 seconds for QNA.

4.1.2 Low Resolution, Multi-Class Model

The external arrival and service rates for this model were specified for each

class/route. Each of the four defined entity classes, Pax, Outsize Cargo (CT), Over-

size Cargo (CV) and Bulk Cargo (CB), had a class-specific service rate at each node

regardless of where it entered the network. The rates, in number of occurrences per

hour, are given in Table 4.7.
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Table 4.7 Rates for low resolution, multi-class model (hr−1).

Service by Node
Class/Route External Arrival 1 2 3 4

P1 4.5 20 30 30 32
CT1 0.5 2 20 20 24
CV1 0.5 2 20 20 24
CB1 0.5 2 20 20 24
P2 2.0 - 30 30 32

CT2 4.0 - 20 20 24
CV2 4.0 - 20 20 24
CB2 4.0 - 20 20 24
P3 0.5 - - 30 32

CT3 0.5 - - 20 24
CV3 0.5 - - 20 24
CB3 0.5 - - 20 24
P4 0.5 - - - 32

CT4 0.5 - - - 24
CV4 0.5 - - - 24
CB4 0.5 - - - 24

This model was first tested using exponentially distributed interarrival and

service times. Node 1 was a G/M/1 queue and so exact analytical results could have

been obtained for it. However, this study is primarily concerned with the perfor-

mance of nodes affected by network dependencies (i.e., all nodes other than node

1); therefore, the effort to calculate analytical results for node 1 was not warranted.

The results for this test are contained in Table 4.8. The relative error of the QNA

results to the simulation results is shown.

Table 4.8 Low resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 95.0840 91.8940 3.4714 1.8263
2 9.3302 9.3553 0.2683 0.0197
3 68.4020 67.2580 1.7009 0.9020
4 11.3730 11.3580 0.1321 0.0324

Overall 184.1892 179.8653 2.4040 -
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The relative errors for all nodes were small thus affirming QNA. The larger

errors occurred at the nodes with larger confidence interval half-widths relative to

the size of the performance measure, thus indicating that the simulation contributed

to these errors. Increasing the simulation run length would shrink these confidence

intervals and provide a better benchmark to compare against. The simulation run

time was 14 hours and 43 minutes as compared to approximately 0.5 seconds for

QNA.

The exponentially distributed service times were replaced with lognormally

distributed service times (denoted LN(µ, σ2)) with shape parameter σ = 3/4 and

scale parameter µ. The scale parameter was calculated based on the prescribed

service rates and the distribution mean, eµ+9/32. The LN(µ, 9/16) distribution has a

squared coefficient of variation of (e9/16− 1) ≈ 0.7551. All four nodes for this model

were G/G/1 queues. Exact analytical results could not be calculated for nodes

2 through 4 because their interarrival-time distributions were unknown. Though

possible, the exact analytical results were not calculated for node 1 because the

performance at node 1 was not of primary interest for the reason just mentioned.

The results for this test are contained in Table 4.9. The relative error of the QNA

results to the simulation results is shown.

Table 4.9 Low resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and LN(µ, 9/16) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 81.3468 80.4130 1.1613 1.5422
2 8.7479 7.8809 11.0013 0.0181
3 51.5498 57.3170 10.0619 0.7532
4 8.8216 8.6317 2.2000 0.0215

Overall 150.4661 154.2426 2.4484 -

The size of the confidence interval half-widths was larger at nodes 1 and 3

relative to the size of the performance measure, thus possibly explaining the larger

relative error at node 3 but not node 2. The larger errors at nodes 2 and 3 might
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reveal a slight weakness by QNA to model the particular squared coefficient of vari-

ation, traffic intensity, and network construct combinations represented by these

nodes. Nevertheless, all errors were relatively small thus affirming QNA. The simu-

lation run time was 14 hours and 41 minutes. The run time for QNA was about 0.5

seconds for this test and the remaining tests for this model.

Next, the LN(µ, 9/16) service times were replaced with Weibull(4/5, γ). The

results are contained in Table 4.10. The Weibull(4/5, γ) has a squared coefficient of

variation of (8Γ(2.5)/5Γ(1.25)2 − 1) ≈ 1.5889 where the Γ(·) is the gamma function

(See Appendix A).

Table 4.10 Low resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and Weibull(4/5, γ) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 119.9952 118.1400 1.5703 2.7654
2 13.7842 12.5240 10.0623 0.0356
3 97.1904 91.3940 6.3422 1.4827
4 17.4047 17.5940 1.0759 0.0567

Overall 248.3745 239.6520 3.6397 -

This test had the same error pattern as the previous one; however, the errors

for this test were slightly lower. The errors were generally small thus affirming QNA.

The simulation run time was 14 hours and 15 minutes.

The model was then tested using LN(µ, 9/16) distributed interarrival and ser-

vice times. No exact analytical results were calculated. The results for this test are

contained in Table 4.11.
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Table 4.11 Low resolution, multi-class results for steady-state queue lengths (Lq) using
LN(µ, 9/16) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 76.6870 68.8270 11.4199 1.5312
2 8.2435 6.7354 22.3907 0.0116
3 50.1659 50.7500 1.1509 0.4611
4 8.7159 8.3822 3.9811 0.0183

Overall 143.8123 134.6946 6.7692 -

Again, the size of the half-widths were larger for nodes 1 and 3. The half-width

for node 1 in particular was over 2% of the size of the performance measure thus

at least partially explaining the large relative error for node 1. The error of QNA

relative to the simulation for node 2 was somewhat large. This might indicate a

weakness by QNA to model the particular squared coefficient of variation, traffic

intensity, and network construct combinations represented by this node. Simulation

run time was 15 hours and 33 minutes.

The simulation was run a second time, using a different set of random number

generating streams, to see if the value of Lq for node 2, in particular, would be

closer to the QNA value. The relative error for node 2 was 22.4% for both runs.

One possible reason for this higher level of error was the large size of the half-width

for node 1. The performance at node 1 directly affects the performance at node 2,

so it is possible that the outcome for node 1 and hence for node 2 would be more

accurate given a longer run time. A more likely explanation is that the particular

combination of distributions, squared coefficients of variation, traffic intensity, and

network structure specified for node 2 was not well captured by the QNA equations.

The simulation was run a third time using identical squared coefficients of variation

but using the gamma(α, β) distribution where α = (e9/16 − 1)−1. The purpose was

to investigate the possibility that the nature of the distribution itself led to the high

error at node 2. The results for this test are contained in Table 4.12.
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Table 4.12 Low resolution, multi-class results for steady-state queue lengths (Lq) using
gamma(α, β) interarrival and service times where α = (e9/16 − 1)−1.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 76.6870 69.0910 10.9942 1.0870
2 8.2435 7.2399 13.8621 0.0116
3 50.1659 51.0430 1.7184 0.5398
4 8.7159 8.6505 0.7560 0.0129

Overall 143.8123 136.0244 5.7254 -

The errors for nodes 1 and 2 were higher, just as in the previous test, thus

revealing the impact the characterization of these nodes had on performance. How-

ever, it is also noted that the distribution does in fact significantly affect performance

witnessed by the reduction in relative error from 22.4% to 13.9% for node 2. The

simulation run time was 14 hours and 22 minutes.

The final test for this model utilized the Weibull(4/5, γ) distribution for inter-

arrival and service times. No exact analytical results were calculated. The results

for this test are contained in Table 4.13.

Table 4.13 Low resolution, multi-class results for steady-state queue lengths (Lq) using
Weibull(4/5, γ) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 131.1516 143.0600 8.3241 3.8391
2 14.9970 14.6120 2.6348 0.0306
3 100.5134 106.0000 5.1760 1.4291
4 17.6540 18.0860 2.3886 0.0614

Overall 264.3160 281.7580 6.1904 -

The larger errors in this test corresponded to the nodes having larger confi-

dence interval half-widths relative to the performance measure thus suggesting the

simulation contributed to these errors. Regardless, the errors of QNA relative to the

simulation were generally small thus affirming QNA. The simulation run time was

14 hours and 44 minutes.
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4.1.3 High Resolution, Single-Class Model

The external arrival and service rates for this model were specified for each

node. These rates, in number of occurrences per hour, are given in Table 4.14.

Table 4.14 Rates for high resolution, single-class model (hr−1).

Node External Arrival Service
1 54 55.00
2 0 56.00
3 0 55.70
4 0 23.00
5 0 12.25
6 0 18.50
7 0 1.80
8 0 51.50
9 0 49.20
10 48 99.00
11 0 74.20
12 0 32.20
13 0 70.10
14 0 29.75
15 0 97.60
16 0 6.75
17 0 39.50
18 0 61.30
19 0 88.10
20 0 19.30
21 0 105.00
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The first test was based on exponentially distributed interarrival and service

times. This model, through node eight, was a Jackson Network; therefore, the first

eight nodes could be analyzed individually as M/M/1 queues and node nine (fork-

join node) could be analyzed as an M/G/1 queue. Exact analytical results were

tabulated through node nine thus providing a basis for verifying both QNA and the

simulation model for this portion of the network. Results for this test are contained

in Table 4.15.

Table 4.15 High resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and service times.

Node Analytical QNA Simulation

QNA
Error Rel-
ative to
Analytical
(%)

Simulation
Error Rel-
ative to
Analytical
(%)

QNA
Error Rel-
ative to
Simulation
(%)

95% CI
Half-
width

1 53.0182 53.0182 51.7110 0.0000 2.4655 2.5279 1.7269
2 26.0357 26.0357 25.5910 0.0000 1.7081 1.7377 0.5092
3 30.7952 30.7952 30.4390 0.0000 1.1568 1.1702 0.5812
4 14.4894 14.4894 14.3480 0.0000 0.9762 0.9855 0.1799
5 6.5666 6.5666 6.5732 0.0000 0.0998 0.1004 0.0772
6 6.1678 6.1678 6.1580 0.0000 0.1589 0.1591 0.0571
7 8.1000 8.1000 7.9545 0.0000 1.7963 1.8292 0.3171
8 15.8149 15.8149 15.8040 0.0000 0.0691 0.0690 0.1690
9 58.0881 57.1003 55.7220 1.7300 4.0733 2.4735 3.1776
10 - 33.7401 34.3040 - - 1.6438 0.6656
11 - 9.3212 9.1860 - - 1.4718 0.0595
12 - 8.0837 8.0191 - - 0.8056 0.0398
13 - 26.2805 25.2950 - - 3.8960 0.2929
14 - 36.6482 36.1480 - - 1.3838 0.9195
15 - 95.6060 88.7920 - - 7.6741 3.6263
16 - 3.2000 3.1979 - - 0.0657 0.0378
17 - 43.9520 42.6040 - - 3.1640 1.1649
18 - 16.4078 16.3410 - - 0.4088 0.1604
19 23.2976 23.0850 - - 0.9209 0.2485
20 - 8.1932 8.2091 - - 0.1937 0.0639
21 - 33.0286 32.7650 - - 0.8045 0.4322

Overall - 555.8470 542.2468 - - 2.5081 -
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The QNA results were exact as expected for the first eight nodes thus providing

some verification of the QNA model. The error for node nine indicated that QNA

did a better job modeling the performance of the fork-join construct than did the

simulation. The largest errors corresponded invariably to nodes whose confidence

interval half-widths were relatively large, ranging from 2% to 6% of the size of the

performance measure. This indicated that the selected simulation run lengths might

not be sufficiently long enough for testing purposes and hence the simulation results

might contribute significantly to the errors for this model’s tests. The 7.7% error for

node 15 was noticeably higher than for the others. This is caused by QNA’s inability

to perfectly model the activity unique to this node. The errors for the remaining

nodes were all below 5%. The simulation run time was 7 hours and 11 minutes. The

QNA run times for all the tests related to this model were all approximately 0.5

seconds.

Next, the exponential distribution was replaced with the LN(µ, 9/16) distribu-

tion for service times. The first node could be analyzed individually as an M/G/1

queue, but the others could not because of network dependencies. The results for

this test are contained in Table 4.16. The relative error of the QNA results to the

simulation results is shown.

4-16



Table 4.16 High resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and LN(µ, 9/16) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 46.5249 45.4390 2.3898 1.4335
2 19.7554 20.0210 1.3266 0.3668
3 23.2423 24.0170 3.2256 0.4491
4 12.0022 11.9730 0.2439 0.1846
5 5.6009 5.6674 1.1734 0.0532
6 5.1843 5.1868 0.0482 0.0344
7 7.0248 7.0996 1.0536 0.2746
8 14.9480 15.1920 1.6061 0.1993
9 47.4305 51.1630 7.2953 2.5109
10 28.8719 29.4360 1.9164 0.5582
11 7.4003 7.3384 0.8435 0.0517
12 6.8065 6.8115 0.0734 0.0407
13 20.0026 20.6520 3.1445 0.2863
14 28.2626 31.1390 9.2373 0.9307
15 72.2272 71.9970 0.3197 2.9283
16 2.7687 2.7529 0.5739 0.0339
17 36.4130 36.2260 0.5162 1.0034
18 13.1859 13.1930 0.0538 0.1420
19 18.1404 18.2290 0.4860 0.1825
20 6.9000 6.9518 0.7451 0.0665
21 25.0692 25.5190 1.7626 0.3469

Overall 447.7616 456.0044 1.8076 -

While not shown in the table, the QNA result was exact for the M/G/1 Recep-

tion node. Again, the larger errors corresponded to nodes with relatively large 95%

CI half-widths. The volatility of the fork-join construct may have contributed to the

error at node 9. The error at node 14 is attributed to QNA’s inability to rightly

model the activity there. Even so, all errors were relatively low thus affirming QNA.

The simulation run time was 7 hours and 56 minutes.

LN(µ, 9/16) was then replaced with Weibull(4/5, γ) as the service-time distri-

bution. Node 1 could be analyzed individually as an M/G/1 queue, but the others

could not. The results for this test are contained in Table 4.17. The relative error of

the QNA results to the simulation results is shown. The Weibull(4/5, γ) distribution

has a squared coefficient of variation of (8Γ(2.5)/5Γ(1.25)2 − 1) ≈ 1.5889.
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Table 4.17 High resolution, single-class results for steady-state queue lengths (Lq) using
exponential interarrival and Weibull(4/5, γ) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 68.6292 66.6380 2.9881 2.1843
2 41.0917 38.6480 6.3230 0.8649
3 48.9074 46.3000 5.6315 0.9498
4 20.4621 20.1440 1.5791 0.3114
5 8.8868 8.8853 0.0169 0.0858
6 8.5286 8.5187 0.1162 0.0879
7 10.6846 10.3670 3.0636 0.5287
8 24.3295 24.1110 0.9062 0.3095
9 80.2182 69.2470 15.8436 2.6266
10 45.4436 46.3570 1.9704 1.0410
11 13.9178 13.6120 2.2465 0.0851
12 11.1503 10.9820 1.5325 0.0837
13 41.3320 37.0920 11.4310 0.5546
14 56.7735 50.7200 11.9351 1.3167
15 151.7657 127.4600 19.0693 5.2391
16 4.2364 4.2404 0.0943 0.0494
17 62.0696 58.8700 5.4350 1.6288
18 24.1374 23.9920 0.6060 0.3529
19 35.6666 34.9270 2.1176 0.4248
20 11.2987 11.1570 1.2701 0.1510
21 52.1210 50.2070 3.8122 0.6759

Overall 821.6507 762.4754 7.7609 -

The QNA result was exact for the M/G/1 Reception node as compared to

analytical results. The largest errors occurred for nodes with the largest confidence

interval half-widths relative to their means, indicating the simulation results con-

tributed to these errors. The errors associated with nodes 9 and 15 were relatively

large. Error at node nine was not unexpected due to the high volatility of the

fork-join construct. The error at node 15 is attributed to QNA. The errors for the

remaining 19 nodes were under 12%. Errors were generally larger for this test than

for the previous one. The simulation run time was 7 hours and 29 minutes.

For the next test, all interarrival and service times were distributed LN(µ, 9/16).

All twenty-one nodes are G/G/1 queues. Hence, exact analytical results could only

be calculated for node 1 because the interarrival-time distributions for the remain-
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ing nodes were unknown. Exact analytical results were not calculated for node 1

because it would have contributed little to the analysis. The results for this test are

contained in Table 4.18.

Table 4.18 High resolution, single-class results for steady-state queue lengths (Lq) using
LN(µ, 9/16) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 40.0120 38.8400 3.0175 1.1020
2 19.6391 19.3050 1.7306 0.3325
3 23.2327 23.2580 0.1088 0.3926
4 12.0021 11.9240 0.6550 0.2096
5 5.6009 5.6363 0.6281 0.0651
6 5.1842 5.1388 0.8835 0.0502
7 7.0248 6.9410 1.2073 0.2129
8 12.2604 12.2460 0.1176 0.1323
9 47.4656 47.9240 0.9565 1.7195
10 26.4605 26.6530 0.7222 0.4495
11 7.3808 7.2397 1.9490 0.0402
12 6.7993 6.7212 1.1620 0.0346
13 19.9934 20.1510 0.7821 0.2827
14 28.2565 29.5030 4.2250 0.8861
15 72.2253 68.6070 5.2740 2.1506
16 2.7687 2.7568 0.4317 0.0364
17 36.4130 35.8230 1.6470 0.9669
18 13.1859 13.1040 0.6250 0.1421
19 18.1404 18.1040 0.2011 0.2126
20 6.9000 6.9009 0.0130 0.0671
21 25.0692 25.4340 1.4343 0.3364

Overall 436.0148 432.2107 0.8801 -

4-19



This model was the most complex tested so far, yet the errors of QNA relative

to the simulation were very small being at or below 5%. This indicates that there is

not a direct relationship between network complexity and QNA performance. The

largest errors occurred at nodes 14 and 15. The simulation run time was 7 hours

and 42 minutes.

Finally, the model was tested using the Weibull(4/5, β) throughout. Again,

all nodes are G/G/1 queues. Results for this test are contained in Table 4.19.

Table 4.19 High resolution, single-class results for steady-state queue lengths (Lq) using
Weibull(4/5, β) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 84.2402 81.5160 3.3419 2.9717
2 41.3680 40.7560 1.5016 0.9699
3 48.9303 48.3400 1.2211 1.1641
4 20.4623 20.1830 1.3838 0.3778
5 8.8869 8.9568 0.7804 0.1344
6 8.5287 8.5544 0.3004 0.0711
7 10.6846 10.2300 4.4438 0.3261
8 24.3295 24.4670 0.5620 0.3881
9 80.2182 76.6640 4.6361 4.1881
10 51.2006 52.5000 2.4750 1.2586
11 13.9636 13.8540 0.7911 0.1091
12 11.1673 11.1350 0.2901 0.0996
13 41.3538 38.2890 8.0044 0.5687
14 56.7881 51.4460 10.3839 1.7450
15 151.7702 136.9000 10.8621 6.9603
16 4.2365 4.2615 0.5866 0.0504
17 62.0696 59.2230 4.8066 2.1444
18 24.1374 24.1280 0.0390 0.3059
19 35.6666 35.2510 1.1790 0.4943
20 11.2987 11.2510 0.4240 0.1555
21 52.1210 51.3050 1.5905 0.8127

Overall 843.4221 809.2107 4.2277 -

This test revealed a similar error pattern to that of the previous test. All errors

were reasonable small thus affirming QNA. The simulation run time was 8 hours and

9 minutes.
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4.1.4 High Resolution, Multi-Class Model

The external arrival and service rates for this model were specified for each

route. Each of the 13 defined routes had a route-specific service rate at each node

along its path. The rates, in number of occurrences per hour, are given in Tables

4.20 and 4.21. The service rates are rounded to the nearest tenth.

Table 4.20 Rates for high resolution, multi-class model (hr−1).

Service by Node
Route External Arrival 1 2 3 4 5 6 7 8 9 10

1 16 64.8 68.4 67.5 18.0 - - - 66.6 62.1 124.2
2 4 57.6 60.8 60.0 - 9.6 - - 59.2 55.2 110.4
3 10 57.6 60.8 60.0 - - 38.4 - 59.2 55.2 110.4
4 2 36.0 38.0 37.5 - - 24.0 4.5 37.0 34.5 69.0
5 4 57.6 60.8 60.0 - 9.6 - - 59.2 55.2 110.4
6 7 50.4 53.2 52.5 - - 33.6 - 51.8 48.3 96.6
7 7 50.4 53.2 52.5 - - 33.6 - 51.8 48.3 96.6
8 1 36.0 38.0 37.5 - - 24.0 4.5 37.0 34.5 69.0
9 1 36.0 38.0 37.5 - - 24.0 4.5 37.0 34.5 69.0
10 2 72.0 76.0 75.0 - - - - - - 138.0
11 16 64.8 68.4 67.5 - - - - - - 124.2
12 2 72.0 76.0 75.0 - - - - - - 138.0
13 30 50.4 53.2 52.5 - - - - - - 96.6

Table 4.21 Rates for high resolution, multi-class model (hr−1).

Service by Node
Route 11 12 13 14 15 16 17 18 19 20 21

1 - 20.3 - 18.9 119.7 - - 105.8 - 21.6 126.0
2 100.0 - 95.2 - 106.4 - 24.8 - 96.0 - 112.0
3 100.0 - 95.2 - 106.4 - 24.8 - 96.0 - 112.0
4 62.5 - 59.5 - 66.5 - - 58.8 60.0 - 70.0
5 100.0 - 95.2 - 106.4 - - 94.0 96.0 - 112.0
6 87.5 - 83.3 - 93.1 - 21.7 - 84.0 - 98.0
7 87.5 - 83.3 - 93.1 - - 82.3 84.0 - 98.0
8 62.5 - 59.5 - 66.5 - 15.5 - 60.0 - 70.0
9 62.5 - 59.5 - 66.5 - - 58.8 60.0 - 70.0
10 125.0 - 119.0 - - 2.7 - - 120.0 - 140.0
11 112.5 - 107.1 - 119.7 - - 105.8 108.0 - 126.0
12 - 22.5 - 21.0 133.0 - - 117.5 - 24.0 140.0
13 87.5 - 83.3 - 93.1 - - 82.3 84.0 - 98.0
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The model is first tested using exponentially distributed interarrival and ser-

vice times. Exact analytical results could not be obtained for any node under the

current set of assumptions. (Exact steady-state results could be obtained by chang-

ing queuing disciplines from FCFS to LCFS-PR or by using a single service process

at each node independent of routes [4]). Therefore, computer simulation was the

only available basis for comparison. The results for this test are contained in Table

4.22. The relative error of the QNA results to the simulation results is shown. The

simulation run time was 7 hours and 50 minutes. The QNA run times for this test

and the other tests for this model were about 0.5 seconds.

Table 4.22 High resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 41.1312 40.7390 0.9627 0.9290
2 12.0811 11.7360 2.9405 0.0839
3 14.8531 14.4370 2.8822 0.1071
4 7.1799 7.4688 3.8681 0.0776
5 4.1868 4.2243 0.8877 0.0459
6 4.7590 4.4041 8.0584 0.0273
7 7.1360 6.7497 5.7232 0.1003
8 11.4645 11.5820 1.0145 0.0891
9 70.7920 67.5830 4.7482 2.4770
10 15.5430 15.3480 1.2705 0.1347
11 7.3158 6.9108 5.8604 0.0319
12 6.4016 6.5279 1.9348 0.0566
13 13.6926 12.8430 6.6153 0.0936
14 15.2721 15.2890 0.1105 0.2433
15 64.2096 59.0640 8.7119 1.6811
16 2.1190 2.1726 2.4671 0.0344
17 19.0971 18.2460 4.6646 0.3398
18 5.6809 5.5555 2.2572 0.0234
19 16.1337 15.4220 4.6148 0.1102
20 3.8854 4.0011 2.8917 0.0219
21 18.5553 18.0920 2.5608 0.1394

Overall 361.4897 348.3958 3.7583 -
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The errors were higher than expected considering that all network processes

were exponentially distributed thus indicating possible cause for concern. No corre-

lation could be detected between error size and confidence interval half-width size

relative to the performance measure. The errors of QNA relative to the simulation

were small for all nodes and overall.

The exponential distribution was replaced with LN(µ, 9/16) for service times.

Exact results could not be obtained for any node. The results for this test are

contained in Table 4.23.

Table 4.23 High resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and LN(µ, 9/16) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 36.0938 35.7670 0.9137 0.77617
2 9.2665 8.9324 3.7403 0.0642
3 11.3269 11.2770 0.4425 0.0865
4 6.0418 6.4123 5.7780 0.0639
5 3.5983 3.6450 1.2812 0.0361
6 3.8844 3.5378 9.7970 0.0210
7 6.1547 5.8702 4.8465 0.0989
8 9.0483 9.2114 1.7706 0.0597
9 59.4708 63.5250 6.3821 2.2194
10 13.3230 13.1220 1.5318 0.1103
11 5.7565 5.3757 7.0837 0.0232
12 5.4884 5.3457 2.6694 0.0463
13 10.4715 10.3530 1.1446 0.0740
14 11.8776 12.6950 6.4388 0.2021
15 48.8437 48.8020 0.0854 1.2317
16 1.8437 1.8960 2.7584 0.0301
17 16.2534 15.4550 5.1660 0.2789
18 4.4583 4.2171 5.7196 0.0162
19 12.6896 12.0900 4.9595 0.0698
20 3.3060 3.0391 8.7822 0.0173
21 14.2415 14.0900 1.0752 0.1080

Overall 293.4387 294.6587 0.4140 -
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The errors were slightly larger than for those of the previous test. No correla-

tions were found to explain why some errors were larger than others. All errors were

reasonably small. The simulation run time was 7 hours and 50 minutes.

Next, the service-time distributions were changed to Weibull(4/5, γ). The

results for this test are contained in Table 4.24.

Table 4.24 High resolution, multi-class results for steady-state queue lengths (Lq) using
exponential interarrival and Weibull(4/5, γ) service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 53.2422 52.8080 0.8222 1.4284
2 18.8243 18.0710 4.1686 0.1599
3 23.3046 22.3620 4.2152 0.1738
4 9.9138 10.1480 2.3078 0.1228
5 5.6012 5.6430 0.7407 0.0666
6 6.8554 6.5385 4.8467 0.0459
7 9.4948 8.9387 6.2213 0.1584
8 17.2536 17.5730 1.8176 0.1408
9 97.9828 80.4490 21.7949 2.9282
10 20.8803 20.7900 0.4343 0.2046
11 11.0435 10.5040 5.1361 0.0560
12 8.5961 9.4256 8.8004 0.0874
13 21.4063 19.4270 10.1884 0.1436
14 23.4041 22.0290 6.2422 0.4231
15 101.1158 83.9840 20.3989 2.5639
16 2.7659 2.8341 2.4064 0.0487
17 25.9321 24.9970 3.7408 0.4966
18 8.6028 8.5964 0.0744 0.0401
19 24.3947 23.7130 2.8748 0.1812
20 5.2769 6.3457 16.8429 0.0397
21 28.8969 28.3520 1.9219 0.2632

Overall 524.7881 483.5290 8.5329 -

The errors for nodes 9, 15, and 20 were somewhat large. The error for node

9 can be partially explained by the difficulty in modeling the fork-join construct

due to its volatile nature. The errors at nodes 9 and 15 did correspond to largest

confidence interval half-width sizes relative to the performance measures. These two

nodes were the same two nodes that experienced larger errors in the single-class
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version of this test thus implicating the service-time squared coefficients of variation

or the Weibull distribution. No causes for the the larger error size at node 20 were

detected. It is expected that these errors would decrease if the simulation run lengths

were increased. The simulation run time was 7 hours and 36 minutes.

Next, LN(µ, 9/16) was used for all interarrival and service times. All nodes

were G/G/1 queues. No exact analytical results could be calculated. The results for

this test are contained in Table 4.25.

Table 4.25 High resolution, multi-class results for steady-state queue lengths (Lq) using
LN(µ, 9/16) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 31.2504 30.7960 1.4755 0.64856
2 9.2002 8.7384 5.2847 0.0704
3 11.3152 11.0260 2.6229 0.0797
4 6.0416 5.5251 9.3482 0.0527
5 3.5982 3.0126 19.4384 0.0257
6 3.8842 3.2693 18.8083 0.0178
7 6.1547 4.8917 25.8192 0.0798
8 9.0482 8.8461 2.2846 0.0451
9 59.4707 56.5460 5.1722 1.7474
10 12.2901 11.8680 3.5566 0.0814
11 5.7218 5.1972 10.0939 0.0209
12 5.4817 4.9293 11.2065 0.0375
13 10.4581 9.9503 5.1034 0.0623
14 11.8739 11.6890 1.5818 0.1631
15 48.8370 45.3640 7.6559 1.0024
16 1.8498 1.4683 25.9824 0.0219
17 16.2534 13.7860 17.8979 0.2788
18 4.4583 4.0931 8.9223 0.0145
19 12.6896 11.7830 7.6941 0.0638
20 3.3060 2.9830 10.8280 0.0179
21 14.2415 13.8710 2.6710 0.0952

Overall 287.4246 269.6334 6.5983 -

The largest errors did not directly correspond to the largest relative half-width

sizes. The relative errors for five of the nodes were noticeably large. The maximum

error was about 26%. It is expected that a longer simulation run length would
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only marginally decrease the error size. The larger errors here were likely caused by

inability of QNA to capture all the activity occurring at these nodes. The simulation

run time was 11 hours and 10 minutes.

Finally, all interarrival and service times were distributed Weibull(4/5, β). All

nodes were G/G/1 queues. No exact results could be obtained. The results for this

test are contained in Table 4.26.

Table 4.26 High resolution, multi-class results for steady-state queue lengths (Lq) using
Weibull(4/5, β) interarrival and service times.

Node QNA Simulation Relative Error (%) 95% CI Half-width
1 64.8406 64.5480 0.4533 1.7843
2 18.9806 18.7510 1.2245 0.1787
3 23.3324 23.0650 1.1593 0.1940
4 9.9143 11.9420 16.9796 0.1711
5 5.6014 6.7318 16.7919 0.0894
6 6.8559 7.0876 3.2691 0.0426
7 9.4948 10.7300 11.5116 0.2343
8 17.2538 18.3600 6.0251 0.1329
9 97.9831 97.1570 0.8503 4.4447
10 23.3279 23.3010 0.1154 0.2024
11 11.1245 11.0030 1.1042 0.0540
12 8.6120 10.3490 16.7842 0.0896
13 21.4377 20.4580 4.7888 0.1834
14 23.4127 24.1260 2.9566 0.4224
15 101.1319 91.9550 9.9798 3.2186
16 2.7660 3.5634 22.3775 0.0719
17 25.9321 28.6830 9.5907 0.8103
18 8.6029 8.8637 2.9423 0.0368
19 24.3947 24.4360 0.1690 0.2426
20 5.2769 6.4738 18.4884 0.0458
21 28.8969 28.9260 0.1006 0.2812

Overall 539.1731 540.5103 0.2474 -

The errors of QNA relative to the simulation were small for all but five of the

nodes. All errors were below 23%. It is expected that a longer simulation run length

would only marginally decrease the error size. The larger errors here were likely

caused by inability of QNA to adequately capture the activity occurring at these
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nodes. The overall error was very small. The simulation run time was 7 hours and

29 minutes as compared to about 0.5 seconds for QNA.

Traffic intensities had no discernable impact on performance for any test for

any model. However, some level of correlation was detected between traffic intensity

and the size of simulation confidence interval half-widths relative to their means. In

particular, the half-widths that were considerably larger than average corresponded

to the traffic intensities that were extremely high, ranging between .97 and 1.

4.2 Summary

The results of this chapter affirm the ability of QNA to provide highly accurate

steady-state approximations for key performance measures. It was demonstrated

that QNA was just as effective for the higher resolution models as for the lower.

Furthermore, QNA generally performed as well for the multi-class models as for the

single-class models. Performance did degrade somewhat for models having no expo-

nentially distributed processes but is yet highly reasonable for quick-look analyses.

The following table gives the approximate frequency relative errors were below a

given error level.

Table 4.27 The approximate frequency relative errors fell below specific error levels.

Error Level ≤10% ≤15% ≤20% ≤25%
Exponential Arrivals and Nonexponential Service 91% 95% 99% 100%
Nonexponential Arrivals and Nonexponential Service 82% 89% 96% 100%
Single-class 84% 98% 98% 100%
Multi-class 90% 94% 98% 99%
Overall 89% 94% 98% 100%

4-27



5. Conclusions and Future Research

This thesis has proposed an analytical, stochastic model for the Joint Recep-

tion, Staging, Onward Movement, and Integration process, the final phase of U.S.

military deployment. It was noted that the process often experiences bottlenecks be-

cause pax and cargo entities are not directed at an appropriate rate, thus straining

available processing capacity and providing the enemy a vulnerable target. Existing

capabilities for providing critical process performance measures, such as through-

put and closure, to combatant commanders were explored revealing that many are

capable but none can obtain results without lengthy simulation run times.

An analytical, stochastic model of the process was proposed that provides com-

putationally expedient estimates for critical performance measures at points within

the process and for the process as a whole. A notional JRSOI model was developed

based on information from relevant DoD publications and subject matter experts.

Four variations of an open, feed-forward queueing network were presented. A queue-

ing network analysis (QNA) routine was developed for computing the results. Re-

sults obtained using QNA were compared with results from computer simulations

to demonstrate the accuracy of the approximation algorithms and were found to be

extremely accurate in most cases.

The most conspicuous finding of this research was the contrast in run time for

QNA as compared to simulation. The run times for discrete-event simulation ranged

from 5 to 16 hours, whereas those for QNA were at or below 0.5 seconds. Further-

more, the simulation run times, despite being extensive, were only long enough to

ensure that the half-widths for the 95% confidence intervals were less than 5% of the

size of the confidence interval means. Much longer run lengths would be required to

significantly increase the precision of the simulated benchmarks.

The tests conducted verified that QNA produced exact answers for M/M/1

and M/G/1 queues. There was a noticeable variance in relative error between QNA
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and the simulation depending on the queue structure, network dependency, squared

coefficients of variation, parametric probability distributions, and traffic intensity

particular to each node. In general, QNA performed reasonably well for individual

nodes and the entire system for the models tested. Most relative errors were at or

below 10% with an upper bound of about 25% relative error. It is concluded that

QNA tends to perform better when squared coefficients of variation are close to a

value of 1.0. Due to the narrow range of traffic intensities specified, little conclusive

information regarding their impact on performance was revealed. It was observed,

however, that extremely high traffic intensities led to very large confidence interval

half-widths, thus degrading the precision of the associated simulated benchmarks.

As discovered by Whitt [29], the accuracy of the approximations does not necessar-

ily decrease as the complexity of the network increases. Some of the most accurate

results of this study were obtained when testing the largest and most complex net-

works. Surprisingly, QNA performed significantly better for the multi-class models

than for the single-class models according to the 10% relative error standard (see

Table 4.27. However, the performance of QNA for the single-class models was gen-

erally superior to that for the multi-class models according to the 15% relative error

standard). It is concluded that the distribution chosen to obtain a particular squared

coefficient of variation significantly impacts performance. This indicates that QNA

could be improved by incorporating higher-order moments into its calculations.

Early tests indicated that Arena’sr built-in capability to generate random

variates is more effective for some distributions (e.g. gamma) than for others (e.g.

beta). In fact, convergence to known steady-state results could not be obtained for

a simple M/G/1 queue with beta distributed service times until a new beta random

variate generator was developed utilizing the built in gamma variate generator. This

highlighted the fact that simulations, while providing good general standards against

which to compare the QNA results, are not infallible.
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This thesis contributes significantly to the military operations research litera-

ture by providing a novel approach for modeling JRSOI that is expedient, inexpen-

sive, and produces highly accurate results in contrast to the high cost and extended

run times of existing models. It lays the groundwork for the development of a com-

prehensive queueing network analysis tool specifically tailored for JRSOI. The base

model developed here can readily be expanded and adapted to any potential area of

conflict. Furthermore, it validates the use of analytical approximation techniques for

obtaining performance metrics. The capability to expediently compute network per-

formance measures can greatly increase a combatant commander’s ability to properly

regulate entity flow and obtain other useful information to aid the efficient build up

of combat capability.

There are many potential extensions to this research. First, much additional

testing and analysis can be conducted. Simulation run times can be significantly

increased, allowing the simulations more time to converge to true steady-state re-

sults. This would provide a better standard against which to compare the QNA

estimates. Alternatively, multiple simulation runs at the current run length and us-

ing distinct random number streams would help reduce statistical variance and thus

yield more precise standards. Furthermore, the approximation algorithms can be

tested against a wider variety of network topologies, resolutions, arrival and service

rates, parametric distribution families, number of classes, number of servers, squared

coefficients of variation, and traffic intensities. Extensive testing in the form of de-

signed experiments could reveal patterns indicating if, when, and how these factors

(or interactions thereof) affect performance. Such analyses could lead to the place-

ment of restrictions on model inputs or to correction methods for the algorithm.

In addition, the effect multiple servers and bulk arrivals and departures have on

performance could be investigated.

Second, this research can be extended by exploring the behavior of superpo-

sition and departure operations at queueing stations. Superposition occurs when
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multiple streams of entities arrive at the same queueing station and departure oc-

curs as entities depart a queueing station. Whitt [28] utilized parameters in his

algorithms that can be adjusted to account for the impact these operations have

on performance. Yet, these parameters were fixed at a default value of zero and

the author does not provide a methodology for selecting them. The only guidance

provided is that they range from zero to unity.

Third, this research can be extended to explore the possibility of developing an

algorithm to obtain performance measures for JRSOI networks based on transient

rather than steady-state analysis. If found to be practical, this would provide a more

accurate representation of true network activity at a given point in time. However,

transient analysis of queueing networks is not straightforward.

Finally, the ultimate practical extension of this research would be to develop

a user-friendly software program based on the QNA algorithms for use during de-

ployment. Such a tool would equip analysts in the field with a very inexpensive,

portable, accurate, and high-speed analysis capability they could use to assist in the

decision making process.
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Appendix A. Probability Distributions

Distribution 1 The exponential distribution, with scale parameter λ ≥ 0, is denoted

by expo(λ). Its cdf is given by

F (x) =





1− e−λx, if x > 0

0, otherwise.

The mean and variance are given by λ and λ2 respectively.

Distribution 2 We denote the gamma distribution with shape parameter α > 0 and

scale parameter β > 0 by gamma(α, β). Its cdf is given by

F (x) =





1− e−x/β
∑α−1

j=0
(x/β)j

j!
, if x > 0

0, otherwise.

The mean and variance are given by αβ and αβ2 respectively.

Distribution 3 The lognormal distribution, with shape parameter σ > 0 and scale

parameter µ ∈ (−∞,∞), is denoted by LN(µ, σ2). There is no general closed form

for the cdf so the density function is given as follows

f(x) =





1

x
√

2πσ2
exp −(ln x−µ)2

2σ2 , if x > 0

0, otherwise.

The mean and variance are given by eµ+σ2/2 and e2µ+σ2
(eσ2 − 1) respectively.
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Distribution 4 The Weibull distribution, with shape parameter α ≥ 0 and scale

parameter β ≥ 0, is denoted by Weibull(α, β). Its cdf is given by

F (x) =





1− e−(x/β)α
, if x > 0

0, otherwise.

The mean and variance are given by β
α
Γ( 1

α
) and β2

α

{
2Γ( 2

α
)− 1

α

[
Γ( 1

α
)
]2

}
respectively

where Γ(α) is defined by Γ(u) =
∫∞

0
tu−1e−tdt for any real number u > 0.
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